
AN INTRODUCTION TO TOPOLOGY 

Topology is a kind of abstraction from metrical geometry. The metrical 
geometry is the distance geometry of a space and gives rise to concepts such as 
length, angles, and curvature. Topology studies spaces with a much more general 
conception of "nearness" than that provided by the metric. Thus, although the 
metric geometry distinguishes spheres, cubes, and pyramids from one another 
due to their different metrical properties, topology classifies them together as in­
stances of the same object. However, topology does mark a difference between 
spheres and doughnuts (or tori) since, loosely speaking, "holes" are topological 
properties. Explaining the difference between topological and metrical properties 
is therefore the natural first order of business when introducing the ideas of 
topology. 

Let's begin in an intuitive way and think about two dimensional surfaces. 
The way we distinguish the topology of a surface from its metrical geometry is 
by stating that topology concerns those properties of a surface that are invariant 
under continuous (for now, elastic) transformations, while the metrical geometry 
is the distance geometry of the surface. As we saw, sameness of topology does 
not imply sameness of metrical geometry, for spheres and cubes are the same 
topological object. But what about the converse? To investigate this consider the 
infinite plane and the infinite cylinder. Topologically these are distinct because 
they cannot be continuously transformed into each other. Thus, consider an open 
disc (a disc without a boundary). It is topologically equivalent to the infinite 
plane because it can be continuously transformed into the infinite plane depicted 
(so being finite or infinite are not topological properties!). 
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22 CRAIG CALLENDER AND ROBERT WEINGARD 

Next, form the punctured disc by removing one point from the open disc. 
By similar reasoning we see that the punctured disc is topologically equivalent 
(=) to the punctured plane (the plane with one point removed). But it is also easy 
to see that the punctured disc is topologically equivalent to a finite open cylinder 
(a cylinder without boundaries). Just stick your finger in the puncture and pull it 
up (or out) to form the cylinder, which, as the arrows indicate, is topologically 
equivalent to an infinite cylinder. 

Therefore, the punctured plane = punctured disc = infinite cylinder, and by the 
transitivity of "can be continuously transformed into", the punctured plane = in­
finite cylinder. However, the plane cannot be continuously transformed into the 
punctured plane. By smoothly stretching and compressing the plane we simply 
cannot form a puncture, so the punctured plane ^ infinite plane, and so, the infi­
nite plane ^ infinite cylinder. 

More simply, let us say that a surface is simply connected iff every simple 
(i.e., non-intersecting) closed curve can be continuously contracted to a point. 
The plane is simply connected while the cylinder is not. As we see in the picture, 
a, which goes "around" the cylinder, can not be smoothly contracted to a point. 

a 

Being simply connected is a topological property, so once again we conclude the 
two surfaces are not topologically equivalent. 

Metrically, however, the plane and the cylinder are equivalent in the follow­
ing sense. Since a rectangular sheet can be rolled up into a cylinder without 
stretching or tearing it, a two dimensional being living in a cylinder cannot, by 
making distance measurements (measuring the lengths of curves), tell whether he 
is living on a cylinder or a plane, if he confines himself to a simply connected 
region. Of course, if he makes a trip all around the cylinder, he can tell he does 
not live in the plane. But then he is making use of a topological property, 
namely, that the cylinder is not simply connected. 

We have seen that the cylinder and the plane are not topologically equiva­
lent because one is simply connected and the other is not. This gives rise to the 
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AN INTRODUCTION TO TOPOLOGY 23 

questions: are all (non-) simply connected topologies equivalent? The answer in 
each case is no, as it is easy to see. First, consider a sphere (S2) and the plane. 
Both are simply connected yet they are obviously not topologically equivalent. 
For example, the punctured sphere—the sphere missing a point—is, as the reader 
should now be able to see, topologically equivalent to the infinite plane. Since 
the sphere is not topologically equivalent to the punctured sphere, it is not 
topologically equivalent to the plane. Interestingly, this shows that puncturing a 
simply connected surface does not necessarily make it non-simply connected. 

Of course, we know intuitively that the sphere cannot be continuously 
transformed into the plane without tearing it. This is because the surface of the 
sphere closes around into itself in all directions, i.e., that it completely encloses 
a volume. But that is a characterization that depends on the two spheres embed­
ding in three dimensional space. We would like to characterize the topology of a 
sphere in an intrinsic way, using only two dimensional notions. A two dimen­
sional being confined to the surface, who knew nothing of three dimensional 
space, could still characterize the topology of his world using properties that 
make no reference to an embedding space. For example, he can discover that his 
universe is finite but unbounded. We have here used the metrical notion of finite. 
It turns out that topologically the crucial property is compactness, which we 
will soon study. 

As in the case of simply connected surfaces, not all non-simply connected 
surfaces are topologically equivalent. Just compare the cylinder with the torus or 
doughnut. As in the previous case of the plane and the sphere, the cylinder and 
the torus differ in that the former is not compact but the latter is. 

So far we have been thinking intuitively about surfaces by picturing them 
in three dimensional space. But there are surfaces (two dimensional "manifolds") 
that cannot be so embedded. That is, there are surfaces that are not topologically 
equivalent to any subset of three dimensional Euclidean space. An important ex­
ample is the projective plane. We can obtain a model of the projective plane by 
identifying antipodal points on the surface of a sphere. The projective plane is 
represented by the sphere when we regard antipodal points as the same point. To 
obtain a simpler picture, note that if we throw away all the points above the 
equator, we still have all the points of the projective plane represented. 

equator 
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24 CRAIG CALLENDER AND ROBERT WEINGARD 

Flattening the remaining hemisphere (including the equator), the projective plane 
can be represented by a disc with opposite points on the boundary being 
identified. Like the sphere, the projective plane closes in on itself—it is compact 
(and we can see here that being compact is not in any simple way equivalent to 
enclosing a volume). But unlike the sphere it is not simply connected. A curve 
like a, for example, cannot be continuously contracted to a point. Further, un­
like the plane, cylinder, sphere and torus, it is not orientable. A left-right orien­
tation can not be consistently established at each point. For example, if "->" is 
right handed we see that it becomes left-handed "«—" as we move through the 
"boundary" from one side to the other. 

The projective plane is our first example that topology applies to more 
exotic two dimensional spaces than the usual surfaces in three dimensional 
Euclidean space. In order to be able to extend the notions of topology to even 
more exotic spaces, higher dimensions, and many other structures such as groups, 
we need to generalize and make precise, the notion of topological equivalence 
that we intuitively explained in terms of smoothly stretching and compressing 
surfaces. We need, in the first instance, to give a precise and general enough 
characterization of continuity. 

The key to this (and thus to topology) is the notion of an open set. In the 
plane and other two dimensional surfaces, the paradigm open sets are the interi­
ors of discs (open discs). They form a basis for the set of open sets of the sur­
face, i.e., any open set is a union of open sets from the basis. In order to ensure 
that the union of arbitrary opens sets is open, we take the whole space to be 
open, and it's convenient to take the empty set to be open as well. Closed sets 
are then defined to be the complements of the open sets, so the whole space and 
the empty set are to be both open and closed. While the paradigmatic open set is 
a disc minus its boundary, a disc with its boundary is a paradigmatic closed set. 
However, not all sets are either open or closed. While some are both, plenty are 
neither, e.g., a disc plus only part of its boundary. 

Let's be more explicit about what we mean by the boundary of a set. Note 
that for a point p on the boundary of a disc, each open set containing p contains 
points in the disc and points not in the disc. Consequently, we say that for any 
set Y, the boundary B(Y) of Y equals the set of points p such that any open set 
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AN INTRODUCTION TO TOPOLOGY 25 

containing p contains points in Y and points in Yc, where Yc is the complement 
of Y. An equivalent way of putting this is to define the interior of a set Y, I(Y), 
as the union of all the open sets contained in Y, and the exterior of Y to be the 
interior of Yc. Then the boundary of Y are those points neither in I(Y) nor I(YC). 
It follows that a set is closed iff it contains its boundary (because its exterior is 
its complement). 

Let's consider some examples. Let S be a surface with its standard topology 
and a discrete set of points. Intuitively, we know Yc is open so / must be 
closed. More precisely, the only boundary points of / are the points of Y them­
selves, so Y must be closed, and in fact, B(Y)= Y. Let S equal an infinite line 
that we identify with the set of real numbers and let Y be the subset consisting 
of all the rational points. Any open set, e.g., the open interval, contains both ra-
tionals and irrationals, so B(Y) = S. Let S be the real line and Y the closed inter­
val between 0 and 1, [0, 1]. The boundary of /consists of the two points 0 and 
1. But suppose S is the plane and Y is [0, 1] on the *-axis. Relative to the new 
S, Y is still closed (it contains all its boundary points), but B(Y)= Y. 

Returning to open sets, the important point is that the topology of a sur­
face (or any set) is coded into the set of its open sets. For example, consider 
what happens when we puncture the plane. The puncture is contained in a nested 
series of open sets. If it is at the origin, then we can consider the series of open 
sets that are the interiors of circles of radius \ln, n>\. 

Before the puncture the intersection of these open sets is not empty, it consists 
of just the puncture point. But after the puncture, their intersection is empty 
(note that after the puncture they are still all open). 

Further, we can now define continuity. Since a continuous transformation 
of a surface is really a map or function from one surface to another, what we 
really need to define is the notion of a continuous function. First, then, we de­
fine a function / , from one set M into another set N, f: M —> N, to be a rule 
that associates with each element xe M a unique element y =f(x)e N. If, in addi­
tion, for each ye N, there exists an x such that f(x)=y, f is onto. 

Now consider two surfaces M, N and a map f:M-*N that works as pic­
tured below. The circles are centered on the origin of the coordinates in both, the 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

onist/article/79/1/21/1049449 by U
niversity of C

alifornia, San D
iego user on 13 M

ay 2025



2 6 CRAIG CALLENDER AND ROBERT WEINGARD 

circles of radius r < n are mapped onto the corresponding circles in N, the circles 
of radius p > n in M are mapped to circles of radius p + 1 in N. Therefore, in 
mapping M to N, f tears M since / maps N into two disjoint pieces separated 
by a region (the annulus) of N that is not in the range of / . Because of this we 
can form an open set of N that contains points both in and out of the range of / , 
as pictured, whose inverse image (the set of points of M mapped into that set) is 
not an open set since it contains part of its boundary. The inverse image does 
not preserve the open set structure. If in mapping M to N no tear was produced, 
then we can see that the inverse image of an open set in N would be open in M 
and the map would be continuous. It turns out, then, that this is the crucial 
property of a continuous function, and our general definition of a continuous 
function f:M-*Nis:f is continuous iff for any open set XQN, f~l(x) is open 
in M, where f~\x) is the set of points in M that / maps into x. 

However, note that / being continuous does not fully capture our idea of 
topological equivalence. Because the plane is topologically equivalent to an open 
disc, it can be continuously mapped into an open disc that is part of the sphere. 
Clearly, that / is continuous and into is not enough for topological equivalence. 
/ must be onto as well, and it must be 1-1. The plane can be mapped continu­
ously into an open interval of the real line, but such a map cannot be 1-1. In 
other words, dimensionality is a topological property (or invariant). 

One more condition on / is still needed for topological equivalence, namely, 
that the inverse of / (that exists because / is 1-1) is also continuous. Here is a 
simple example showing that / being continuous, 1-1 and onto is not enough 
to imply / " ' is continuous. Let M be the set [0, 1) that is the half open, half 
closed interval of the real line between 0 and 1 (the set of points x, 0<x< 1). Let 
N be a circle and / a function mapping M continuously onto N as pictured, in 
the clockwise direction. As defined the map is 1-1. Intuitively, however, M and 
N are not topologically equivalent and this is reflected in the fact that / - 1 is not 
continuous. As the reader has probably guessed, the problem is /(0). Consider 
the inverse image of/-1 on [0,1/2). Since / is 1-1, that is just /([0,l/2)) which 
is [/(0), /(1/2)) which is not an open set in the circle S2. But [0,1/2) is an open 
set of M since [0,1) is the whole space M. True, considered as part of the infinite 
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AN INTRODUCTION TO TOPOLOGY 27 

line, [0, 1) is not open, and neither is [0, 1/2), but in our case the complement 
of [0, 1/2) is [1/2,1) which is closed (it contains its boundary {1/2}). 

• ) 

l/a 1 

8(1 to) 

Our definition of topological equivalence for surfaces (and related spaces) is 
then: Two surfaces M and N are topologically equivalent or homeomorphic iff 
there exists a 1-1 onto function f:M-*N such that both / and its inverse / " ' 
are continuous. Such a map, called a homeomorphism, establishes a 1-1 corre­
spondence between the open sets of M and N. It is in this sense that all the in­
formation about the topology of a surface is contained in the open sets. 

We are now ready to be fully general. Given a set 5, we call a set of sub­
sets, T, of 5, a topology for 5 iff the following conditions are satisfied: 

(1) T is closed under arbitrary unions 
(2) Tis closed under finite intersections 
(3) SeTand tye T. 

By definition T is the set of open sets of S relative to the topology 7*. The 
conditions (1) and (2) are abstracted from the behavior of the familiar open sets 
of Euclidean space, surfaces, etc. In particular, note that in (2) we are limited to 
finite, not arbitrary, intersections. For example, in the real line consider the open 
sets (relative to the standard topology) of the form (-1/n, +l/«), for n > 1. The 
only point they have in common is 0, so 

n( - l /n ,+ l /n)={0} 

and {0} is a closed set. 
Note also the emphasis on "relative". In general a set does not have a 

unique topology. Any subset of S that satisfies (1) through (3) specifies a topol­
ogy for S. For example, given any set there are two limiting cases, the discrete 
topology Td, which consists of all the subsets of 5, 

y e Td iff YcS, 

and the trivial or indiscrete topology 7", that consists of just 5 and <(>, 

y e 7, iff y = 5 o r Y=$. 
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28 CRAIG CALLENDER AND ROBERT WEINGARD 

While not the topology we are used to, these are quite useful for getting a feel 
for the definitions and testing general assertions. The important point is that 
when we say a set has a certain topological property, such as being compact or 
being topologically equivalent to another set, it is always relative to a given 
topology. In fact, it's common practice to call the pair {S,T} a topological 
space, so that the claim that two topological spaces are homeomorphic or that 
one is compact, is automatically relative to a given topology T. 

A nice example of this relativity occurs in the topology of the real line. It 
concerns the important topological property of being connected. We say that a 
topological space {S,T} is connected iff there do not exist disjoint, non-empty 
sets X, Ye T such that X<u Y=S. The intuitive idea goes like this. Consider 
the plane with its usual topology. If we try to divide it into two non-empty dis­
joint sets they can't both be open. For example, we can divide it into a closed 
disc and its complement (its exterior) which is open 

But if we remove the disc's boundary, then we do get two disjoint open sets, but 
their union does not equal the plane. A connected set fits together as a single 
piece and intuitively this requires open sets fitting together with their comple­
ments, closed sets. Two disjoint non-empty open sets can not, intuitively, fit 
together. 

But note, this notion of connectedness is not the strongest one possible. In­
deed, maybe the most intuitive notion of being connected is that any two points 
in the topological space can be joined by a continuous path. Such a space is said 
to be arcwise connected. To make this precise, we need to define the notion of a 
continuous path between two points a and b. The definition is pretty much what 
one would expect: A continuous path from a to b in S is a continuous function 
/ : [a,|3] —» 5, from a closed interval of the real line into 5, such that at /(<x) = a, 
/(P)=fc. That is, the continuous function / transfers the continuity of the interval 
to a subset of S. In fact, you might think that the path in S is really the image 
of [oc,|}] under / . But the definition is customary. Anyway, the point is that while 

path (arcwise) connectedness => connectedness, 
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AN INTRODUCTION TO TOPOLOGY 29 

the converse does not hold in an arbitrary topological space. It does hold in the 
usual spaces we are familiar with, but there are exotic counterexamples. One of 
these is the so-called deleted comb space. This space is a subset of the plane con­
sisting of the x-axis from [0,1], all of the lines of constant x= \ln from y = 0 to 
v= 1, and the point a = (;c=0, y = 1), as depicted below. Without a it is obvi­
ously both connected and path connected. Including a it is still connected but 
there is no continuous path from a to any other points in the space. 

a 
l • 

0 1/4 1/2 1 

We can now return to the relativity we mentioned earlier. We consider the 
real line with the standard topology Ts composed of all the open intervals (a,b) 
and their arbitrary unions and with the lower limit topology Th Tt is composed 
of all the (according to Ts) half open intervals [a,b) and their arbitrary unions. 
Our example of relativity is then that the real line in the standard topology is 
connected in 7^ but not 7",. This follows because, for instance, A = u[a,&) and 
Z? = u [ c , a ) are both open (in Tt), disjoint, non-empty and AuB = R. Because 
connectedness is a topological property, the real line with the standard topology 
can not be homeomorphic to the real line with the lower limit topology. Thus, 
not even the identity map, i, from Rs to /?, can be a homeomorphism. It 's 1-1, 
onto and continuous but r 1 is not continuous, i maps non-open sets of Rs into 
open sets of /?;. Remember that [a,b) is not open in Rs, and note that (a,b) is 
open in /?/! 

Next, let 's finally explain compactness. The definition is a bit more com­
plicated than the others and requires a little patience on the part of the student of 
topology. The crucial idea is that of the open cover. A set of open sets Xa is an 
open cover for a set YQS iff Yc\jXa, i.e., iff every part of Y is included in the 
union of the Xa. Then a subset YQS of a topological space {S, T] is compact iff 
every open cover of Y has a finite subcover of Y. 

Let's try to get a feeling for this definition. It turns out that, in its usual 
topology, closed intervals [a,b]'of the real line are compact, but open intervals 
(a,b) and the half open intervals (a,b], [a,b) are not compact. For example, the 
union of the sets (l/n,a), n > 1 cover (0,a] (a > 0), but no finite subcollection of 
the (l/ra,a] cover (0,a]. However, not all closed sets in Rs are compact. Thus the 
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30 CRAIG CALLENDER AND ROBERT WEINGARD 

discrete subset {0,1,2,3,4, ...} is closed but not compact. The open cover 
(n- 1/4, n + 1/4), for all n > 0, has no finite subcover that covers the set since 
(n- 1/4, n + 1/4) covers only n. Therefore, all the sets of the cover are needed. 
Nevertheless, one can easily show that every closed subset Y of a compact space 
S is compact. Since S- Y (Yc) is open, every open cover of Y with Yc added to 
it becomes an open cover of S. Since 5 is compact the open cover Xa plus Y has 
a finite subcover of S and thus of Y. So Y is compact. 

What about the converse question, are all compact sets closed? Here we can 
give a general answer using the topological property of being Hausdorff. A topo­
logical space S is Hausdorff iff for any two distinct points x,y e S, there exist 
disjoint open sets O and O' such that x e O, y e O'. In other words, in a Haus­
dorff space any two distinct points can be separated from each other by disjoint 
open sets. For a picture, consider the real line where we double the point O. 

0P 

>:< 
X < 0 Oq X> 0 

The open sets are all sets (a, 0), (0, a), (a < 0, Op, b > 0), (a < 0, Oq, b >0) and 
their unions. By inspection we see that any open set containing Op intersects one 
containing Oq. 

Note that in the plane, say, single points are closed sets since they are their 
own boundary (their complement is open). But in a non-Hausdorff space, a 
single point can fail to be closed. A simple example is the set {a,b,c} with the 
topology 

T={{a),{a,c},[a,b},{a,b,c},W}-

The set [a] is not closed since its complement in S, {b,c}, is not in T so it is 
not open. And {a,b,c} is not Hausdorff since b and c can not be separated by dis­
joint subsets. However, if one makes S Hausdorff by adding {b} and {c} to T, we 
must also add {b,c} so that T is closed under arbitrary unions. This would make 
{a} closed (as well as open) since its complement is now in T. 

Returning to the question of whether every compact set is closed, we can 
answer that this is true in a Hausdorff space. To get a feel for this answer, let's 
look at a non-Hausdorff space with non-closed compact sets. The space is the 
real line with the finite complement topology, 

Tf={R, <|>, all complements of finite subsets}. 

In this topology R (really Rf) is not Hausdorff, for given any two real numbers 
r\, r2, and open sets 0\, Oi, r\ e Oh r 2 e Oi, 0\ n 02 will be non-empty since 
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AN INTRODUCTION TO TOPOLOGY 31 

each lacks at most a finite number of real numbers, i.e., they will have an in­
finite number of points in common. Every subset of Rf is compact, and so, the 
non-closed open sets are too. Any such open set differs from all the others by 
only a finite number of points. So for the open cover of O we only need a finite 
number of covering sets to cover O. 

Earlier we said that surfaces like the sphere and torus that close around 
themselves are compact and without boundary. Compare a sphere with an open 
disc in the plane. If one removes one point from the sphere it is homeomorphic 
to the open disc and thus not compact. If one adds its boundary circle to the open 
disc the result is also compact but it has no boundary. Similarly, if one adds the 
point back to the punctured sphere the result is also compact but without bound­
ary. That point is something like a boundary in the sense that returning it results 
in a compact set, but when in place, the set still has no boundary at all! 

Suppose we have two topological spaces. Can they be combined into a new 
topological space? Yes, and the most important way of doing this is by forming 
their topological product. Let S and S' be two sets with topologies T and 7", re­
spectively. We have two questions to answer. What is the product space, written 
SxS', and what is the product topology? The first is easy. SxS' is simply the 
Cartesian product of S and S'. That is, SxS' is the set of pairs (J ,* 1 ) , xe S, 
x'e S'. For the second we have to be careful. It is tempting to say that the prod­
uct topology TxT' consists of all the products of sets in T with those of 7", 
i.e., that Tx T consists of all the product sets AxA',Ae T,A's 7". But this 
is not quite right. For let the real line cross itself, RxR. Intuitively, this is the 
plane, each point of which is a pair (x,y), xe R,ye R'. According to our 
suggestion Ax A' and BxB' would be in the product topology, but their union 
AxA'<uBxB' would not be, since it is not equivalent to (Au B)x(A'<j B'). 
As we can see from the picture above, Tx 7" would not be closed under unions. 
To remedy this we do the obvious and define the product topology Tx 7" to be 
the set of all unions of the sets of the form Ax A', where A e T,A'e. 7", i.e., 
we take the set of all products A xA' to be a basis for the topology of S x S'. 

R 

* * ' 

R' 
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32 CRAIG CALLENDER AND ROBERT WEINGARD 

Many familiar topological spaces can be viewed as topological products. 
The plane is R x R = R2, or more generally, n-dimensional Euclidean space has 
the topology R". As the reader would expect, the torus is 51 x 51 and the cylin­
der is R x 51. And importantly, many topological properties such as compact­
ness, connectedness, simple connectedness, being Hausdorff, etc., are preserved by 
taking the product 5 x 5 ' , if both 5 and 5' have the property of interest. Never­
theless, not all properties are preserved. A nice example uses our old friend, /?/. 
/?;, while not compact, has the property that any infinite cover has a countable 
(finite or denumerably infinite) subcover, but this is not true of /?/ x /?,. To see 
this, consider the line A with coordinates x = -y and open sets of the form 
[a,b) x [-a,c). Such an open set will intersect A at one point, (a, -a), as pictured. 

\ * 

a b 

(f,-a) 

1 L [a,b) x [-a,c) 

\ " 

Therefore, R[XRt-A plus all the sets of the form [a,b)x [-a,c) constitute an 
open cover for /?;X/?,. But since A has an uncountable number of points, there is 
no countable subcover. (Note: one can show that RtxRi~A is open in RfXRfi. 

One more point about products. When we form infinite products, such as 
Rw, it's standard to use a different definition of the product topology. 

Finally, let's briefly discuss the relation between topology and distance. We 
have already said that the distance between two points, or the distance geometry, 
is not a topological invariant (property). Nonetheless, there is a close and impor­
tant connection between the two. To understand it we must first define the 
notion of a metric on a set 5. It is a function d: SxS -» R, from pairs of points 
in 5 into the real numbers that satisfies the following conditions. For x,y e 5 

(1) d(x,y) = d(ys) 
(2) d(x,y)>0(d(x,y) = Oiffx=y) 
(3) d(.x,y) + d(y,z)>d(x,z). 

disa generalization of the distance between points in the Euclidean plane, where 
1 and 2 are obvious and 3 is the so-called "triangle inequality", that the distance 
along two sides of a triangle must be greater than or equal to the remaining side. 
Therefore, we will call d(x,y) the distance between x and v. Further, for any 
point p of a set 5 and given metric d on 5, we call the set of points whose dis-
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tance from p is less than e, the e ball, E(p,t) centered on p. As one can demon­
strate, the set of £ balls of 5 form the basis for a topology for S. This topology 
is called the topology induced by d. 

Any set admits a metric. For example, take the trivial metric d such that for 
any x,y, x^y, S(x,y)= 1. Note that for any point p, E(p,l/2) contains only P 
so a subset containing just one element is open in the induced topology. It fol­
lows immediately that the trivial metric induces the discrete topology. But while 
any set admits a metric (really, many metrics), not every topological space 
admits a metric, that is, a metric that induces the given topology. A simple 
example is any finite set S with more than one element with the indiscrete 
topology. Given any metric d on the set, there exists a number 8 such that for 
any x,y e S, d(x,y) < 8. In other words, because there are only a finite number of 
points, points cannot be arbitrarily close to each other. But then, for any point 
p, the ball E(p,S) contains only p, and p is open in the induced topology. And so 
the topology induced by d is not the indiscrete topology, since the only open 
sets in that case are S and <|>. Interestingly, /?, is also not metrizable. More gen­
erally, there are beautiful theorems that state necessary and sufficient conditions 
for a topological space to be metrizable. 

Earlier we mentioned that the notions of finite and infinite are not topolog­
ical notions. The infinite plane and the open disc are topologically equivalent, 
for instance. In terms of a metric, what is going on is the following. Let us say 
that a set A of S is bounded in the metric d iff there is a number M such that 
d(x,y) < M for every x,y e S. Then we can show that the metric d\, on S, defined 
by dh = minimum (d(x,y), 1) induces the same topology as d. According to db, 
every set of S is bounded, even if according to d there are unbounded sets. 

Craig Callender 
Robert Weingard 

Rutgers University 
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