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Abstract	and	Keywords

This	chapter	addresses	the	question	of	whether	phase	transitions	are	to	be	understood	as	genuinely	emergent

phenomena,	discussing	concepts	invoked	in	the	increasing	number	of	publications	on	emergence	and	phase

transitions	and	the	conceptions	of	reduction	and	corresponding	notions	of	emergence.	It	also	considers	recent

attempts	to	provide	well-defined	notions	of	phase	transition	for	finite	systems	and	highlights	the	evolving	nature	of

our	philosophical	understanding	of	phase	transitions,	emergence,	and	reductionism.
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Phase	transitions	are	abrupt	changes	in	the	macroscopic	properties	of	a	system.	Examples	of	the	phenomenon	are

familiar:	freezing,	condensation,	magnetization.	Often	these	transitions	are	particularly	dramatic,	as	when	solid

objects	composed	of	the	silvery	metal	gallium	vanish	into	puddles	when	picked	up	(the	temperature	of	the	hand	is

just	enough	to	raise	gallium's	temperature	past	its	melting	point).	Characterized	generally,	one	finds	them	inside

and	outside	of	physics,	in	systems	as	diverse	as	neutron	stars,	DNA	helices,	financial	markets,	and	traffic.	In	the

past	half-century,	the	study	of	phase	transitions	and	critical	phenomena	has	been	a	central	preoccupation	of	the

statistical	physics	community.	In	fact,	it	is	now	a	truly	interdisciplinary	area	of	research.	Phase	transitions	manifest

at	many	different	scales	and	in	all	sorts	of	systems,	so	they	are	of	interest	to	atomic	physicists,	materials

engineers,	astronomers,	biologists,	sociologists,	and	economists.	However,	philosophical	attention	to	the

foundational	issues	involved	has	thus	far	been	limited.

This	is	unfortunate	because	the	theory	of	phase	transitions	is	unusual	in	many	ways	and	offers	a	novel	perspective

that	could	enrich	a	number	of	debates	in	the	philosophy	of	science.	In	particular,	questions	about	reduction,

emergence,	explanation,	and	approximation	all	arise	in	a	particularly	stark	manner	when	considering	this

phenomenon.	Here	we	will	focus	on	these	questions	as	they	relate	to	the	most	studied	type	of	phase	transition,

namely,	transitions	between	different	equilibrium	phases	in	thermodynamics.	These	are	sudden	changes	between

one	stable	thermo-dynamic	state	of	matter	and	another	while	one	smoothly	varies	a	parameter.	A	paradigmatic

example	is	the	change	in	water	from	liquid	to	gas	as	the	temperature	is	raised	or	the	pressure	is	reduced.

In	the	small	philosophical	commentary	on	this	topic,	such	changes	have	provoked	many	surprising	claims.	Many

have	claimed	that	phase	transitions	cannot	be	reduced	to	statistical	mechanics,	that	they	are	truly	emergent

phenomena.	The	argument	for	this	conclusion	hangs	on	one's	understanding	of	the	infinite	idealization	invoked	in

the	statistical	mechanical	treatment	of	phase	transitions.	In	this	chapter	we	will	focus	on	puzzles	associated	with

this	idealization.	Is	infinite	idealization	necessary	for	the	explanation	of	phase	transitions?	If	so,	does	it	show	that

phase	transitions	are,	in	some	sense,	emergent	phenomena?	If	so,	what	precisely	is	that	sense?	Questions	of	this

sort	provide	a	concrete	basis	for	the	exploration	of	philosophical	approaches	to	reduction	and	idealization,	and

they	also	bear	on	the	ongoing	scientific	study	of	these	systems.
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1.	The	Physics	of	Phase	Transitions

Phase	transitions	raise	interesting	questions	about	intertheoretic	relationships	because	they	are	studied	from	three

distinct	theoretical	perspectives.	Thermodynamics	provides	a	macroscopic,	phenomenological	characterization	of

the	phenomenon.	Statistical	mechanics	attempts	to	ground	the	thermodynamic	treatment	by	explaining	how	this

macroscopic	behavior	arises	out	of	the	interaction	of	microscopic	degrees	of	freedom.	This	project	has	led	to	the

employment	of	renormalization	group	theory,	a	tool	first	developed	in	the	context	of	particle	physics	for	studying

the	behavior	of	systems	under	transformations	of	scale.	While	renormalization	group	theory	is	usually	placed

under	the	broad	rubric	of	statistical	mechanics,	the	methods	employed	are	importantly	different	from	the	traditional

tools	of	statistical	mechanics.	Rather	than	a	probability	distribution	over	an	ensemble	of	configurations	of	a	single

system,	the	primary	theoretical	device	of	renormalization	group	theory	is	the	flow	generated	by	the	scaling

transformation	on	a	space	of	Hamiltonians	representing	distinct	physical	systems.	In	this	section	we	describe	how

these	three	approaches	treat	the	phenomenon	of	phase	transitions,	with	special	attention	to	the	employment	of	the

infinite	particle	idealization.

1.1	Thermodynamic	Treatment

The	thermodynamic	treatment	of	phases	and	phase	transitions	began	in	the	nineteenth	century.	Experiments	by

Andrews,	Clausius,	Clapeyron,	and	many	others	provided	data	that	would	lead	to	developed	theories	of	phase

transitions	and	critical	phenomena.	Gradually	it	was	recognized	that	at	certain	values	of	temperature	and	pressure

a	substance	can	exist	in	more	than	one	thermodynamic	phase	(e.g.,	solid,	liquid),	while	at	other	values	there	can

be	a	change	in	phase	but	no	coexistence	of	phases.

For	instance,	as	pressure	is	reduced	or	temperature	is	raised,	liquid	water	transitions	to	its	gaseous	phase.	At	the

boundary	between	these	phases,	both	liquid	and	gaseous	states	can	coexist;	the	thermodynamic	parameters	of

the	system	do	not	pick	out	a	unique	equilibrium	phase.	In	fact,	at	the	triple	point	of	water	(temperature	273.16K	and

pressure	611.73	Pa),	all	three	phases—solid,	liquid,	and	gas—can	coexist.	The	transitions	at	these	phase

boundaries	are	marked	by	a	discontinuity	in	the	density	of	water.	As	the	pressure	is	reduced	at	a	fixed

temperature,	the	equilibrium	state	of	water	switches	abruptly	from	a	high-density	liquid	phase	to	a	low-density

gaseous	phase.	This	is	an	example	of	a	first-order	phase	transition.	As	the	temperature	is	increased	past	the

critical	temperature	of	647	K,	water	enters	a	new	phase.	In	this	regime,	there	are	no	longer	macroscopically	distinct

liquid	and	gas	phases,	but	a	homogenous	supercritical	fluid	that	exhibits	properties	associated	with	both	liquids

and	gasses.	Changing	the	pressure	leads	to	a	continuous	change	in	the	density	of	the	fluid;	there	are	no	phase

boundaries.	This	supercritical	phase	allows	a	transition	from	liquid	to	gas	that	does	not	involve	any	discontinuity	in

thermodynamic	observables:	raise	the	temperature	of	the	liquid	past	the	critical	temperature,	reduce	the	pressure

below	the	critical	pressure	(22	MPa	for	water),	then	cool	the	fluid	back	to	below	the	critical	temperature.	This	path

takes	the	system	from	liquid	to	gas	without	crossing	a	phase	boundary.	The	transition	of	a	system	past	its	critical

point	to	the	supercritical	phase	is	a	continuous	phase	transition.

Mathematically,	phase	transitions	are	represented	by	nonanalyticities	or	singularities	in	a	thermodynamic	potential.

A	singularity	is	a	point	at	which	the	potential	is	not	infinitely	differentiable,	so	at	a	phase	transition	some	derivative

of	the	thermo-dynamic	potential	changes	discontinuously.	A	classification	scheme	due	to	Ehrenfest	provides	the

resources	to	distinguish	between	first-	and	second-order	transitions	in	this	formalism.	A	first-order	phase	transition

involves	a	discontinuity	in	the	first	derivative	of	a	thermodynamic	potential.	In	the	liquid–gas	first-order	transition,

the	volume	of	the	system,	a	first	derivative	of	the	thermodynamic	potential	known	as	the	Gibbs	free	energy,

changes	discontinuously.	For	a	second-order	phase	transition	the	first	derivatives	of	the	potentials	are	continuous,

but	there	is	a	discontinuity	in	a	second	derivative	of	a	thermodynamic	potential.	At	the	liquid–gas	critical	point,	we

see	a	discontinuity	in	the	compressibility	of	the	fluid,	which	is	a	first	derivative	of	volume	and	hence	a	second

derivative	of	the	Gibbs	free	energy.	Ehrenfest's	scheme	extends	naturally	to	allow	for	higher-order	phase

transitions	as	well.	An	n-th	order	transition	would	be	one	whose	n-th	derivative	is	discontinuous.	Contemporary

statistical	mechanics	retains	the	category	of	first-order	phase	transitions	(sometimes	referred	to	as	abrupt

transitions),	but	all	other	types	of	non-analyticities	in	thermodynamic	potentials	are	grouped	together	as	continuous

phase	transitions.

Continuous	phase	transitions	are	often	referred	to	as	order–disorder	transitions.	There	is	usually	some	symmetry	in

the	supercritical	phase	that	is	broken	when	we	cross	below	the	critical	point.	This	broken	symmetry	allows	for	the
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material	to	be	ordered	in	various	ways,	corresponding	to	different	phases.	A	stark	example	of	the	transition

between	order	and	disorder	is	the	transition	in	magnetic	materials,	such	as	iron,	between	paramagnetism	and

ferromagnetism.	At	room	temperature,	a	piece	of	iron	is	permanently	magnetized	when	exposed	to	an	external

magnetic	field.	In	the	presence	of	a	field,	the	minimum	energy	configuration	is	the	one	with	the	largest	possible	net

magnetic	moment	reinforcing	the	field,	so	the	individual	dipoles	within	the	iron	align	to	maximize	the	net	moment.

This	configuration	remains	stable	even	when	the	external	field	is	removed.	Materials	with	this	propensity	for

induced	permanent	magnetization	are	called	ferromagnetic.	If	the	temperature	is	raised	above	1043	K,	the

ferromagnetic	properties	of	iron	vanish.	The	iron	is	now	paramagnetic;	it	can	no	longer	sustain	induced

magnetization	when	the	external	field	is	removed.	In	the	stable	configuration,	there	is	no	correlation	between	the

alignments	of	neighboring	dipoles.	In	the	paramagnetic	phase,	no	direction	is	picked	out	as	special	after	the

magnetic	field	is	switched	off.	The	material	exhibits	spatial	symmetry.	In	the	ferromagnetic	phase,	this	symmetry	is

broken.	The	dipoles	line	up	in	a	particular	spatial	direction	even	after	the	field	is	removed.	The	order	represented

by	this	alignment	does	not	survive	the	transition	past	criticality.

A	simple	way	to	understand	this	transition	between	order	and	disorder	is	in	terms	of	the	minimization	of	the

Helmholtz	free	energy	of	the	system:	(1)

Here	E	is	the	energy	of	the	system,	T	is	the	temperature,	and	S	is	the	entropy.	The	stable	configuration	minimizes

free	energy.	At	low	temperatures,	the	energy	term	dominates,	and	the	low-energy	configuration	with	dipoles

aligned	is	favored.	At	high	temperatures,	the	entropy	term	dominates,	and	we	get	the	high-entropy	configuration

with	uncorrelated	dipole	moments.	The	change	in	magnetic	behavior	is	explicable	as	a	shift	in	the	balance	of

power	in	the	battle	between	the	ordering	tendency	due	to	minimization	of	energy	and	the	disordering	tendency	due

to	maximization	of	entropy.	As	indicated,	the	paramagnetic–ferromagnetic	transition	is	continuous,	not	first	order.

All	first	derivatives	of	the	free	energy	are	continuous,	but	second	derivatives	(such	as	the	magnetic	susceptibility	

,	where	H	is	the	magnetization)	are	not.

The	transition	from	order	to	disorder	is	also	represented,	following	Landau,	as	the	vanishing	of	an	order	parameter.

In	the	case	under	consideration,	this	parameter	is	the	net	magnetization	M	of	the	system.	Below	the	critical	point,

you	have	different	phases	with	distinct	values	of	the	order	parameter.	If	we	simplify	our	model	of	the	magnetic

material	so	that	the	induced	magnetization	of	the	dipoles	is	only	along	one	spatial	axis	(as	in	the	Ising	model),	then

at	each	temperature	below	criticality	the	order	parameter	can	take	two	values,	related	by	a	change	of	sign.	The

magnetization	vanishes	as	we	approach	the	critical	point	and	remains	zero	in	the	supercritical	phase,

corresponding	to	a	disappearance	of	distinct	phases.

The	vanishing	of	the	order	parameter	close	to	the	critical	temperature	T 	is	characterized	by	a	power	law:	(2)

where	t	is	the	reduced	temperature	(T	—	T )/T .	The	exponent	β	characterizes	the	rate	at	which	the	magnetization

falls	off	as	the	critical	temperature	is	approached.	It	is	an	example	of	a	critical	exponent,	one	of	many	that	appear

in	power	laws	close	to	the	critical	point.	The	experimental	and	theoretical	study	of	critical	exponents	has	been

crucial	to	recent	developments	in	the	theory	of	phase	transitions.

1.2	Statistical	Mechanical	Treatment

Statistical	mechanics	is	the	theory	that	applies	probability	theory	to	the	microscopic	degrees	of	freedom	of	a

system	in	order	to	explain	its	macroscopic	behavior.	The	tools	of	statistical	mechanics	have	been	extremely

successful	in	explaining	a	number	of	thermodynamic	phenomena,	but	it	turned	out	to	be	particularly	difficult	to

apply	the	theory	to	the	study	of	phase	transitions.	There	were	two	significant	obstacles	to	the	development	of	a

successful	statistical	mechanical	treatment	of	phase	transitions:	one	experimental	and	one	conceptual.

The	experimental	obstacle	had	to	do	with	the	failure	of	mean	field	theory.	This	was	the	dominant	approach	to	the

statistical	mechanics	of	phase	transitions	up	to	the	middle	of	the	twentieth	century.	The	theory	is	best	explicated

by	considering	the	Ising	model,	which	represents	a	system	as	a	lattice	of	sites,	each	of	which	can	be	in	two

different	states.	The	states	will	be	referred	to	as	spin	up	and	spin	down,	in	analogy	with	magnetic	systems.

However,	Ising	models	have	been	successfully	applied	to	a	number	of	different	systems,	including	the	liquid-gas
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system	near	its	critical	point.	The	Hamiltonian	for	the	Ising	model	involves	a	contribution	by	an	external	term,

corresponding	to	the	external	magnetic	field	for	magnetic	systems,	and	internal	coupling	terms.	The	only	coupling

is	between	neighboring	spins	on	the	lattice.	It	is	energetically	favorable	for	neighboring	spins	to	align	with	one

another	and	with	the	external	field.	This	model	is	supposed	to	represent	the	way	in	which	local	interactions	can

produce	the	kinds	of	long-range	correlations	that	characterize	a	thermodynamic	phase.

In	statistical	mechanics,	all	thermodynamic	functions	are	determined	by	the	canonical	partition	function.	The

coupling	terms	in	the	Hamiltonian	make	the	calculation	of	the	partition	function	for	the	Ising	model	mathematically

difficult.	To	make	this	calculation	tractable,	we	approximate	the	contribution	of	a	particular	lattice	site	to	the	energy

of	the	system	by	supposing	that	all	its	neighbors	have	a	spin	equal	to	the	ensemble	average.	This	approximation

ignores	fluctuations	of	spins	from	their	mean	values.	The	fluctuations	become	less	relevant	as	the	number	of

neighbors	of	a	particular	lattice	site	increases,	so	the	mean	field	approximation	works	better	the	higher	the

dimensionality	of	the	system	under	consideration.	Once	the	partition	function	is	calculated	using	this

approximation,	there	is	an	elegant	method	due	to	Landau	for	determining	the	critical	exponents.	Unfortunately,

Landau's	method	gives	results	that	conflict	with	experiment.	For	instance,	the	mean	field	value	for	the	critical

exponent	β	is	0.5,	but	observation	suggests	the	actual	value	is	about	0.32.	The	approximation	fails	close	to	the

critical	point	of	a	magnetic	system.	In	fact,	this	failure	is	predicted	by	Landau	theory	itself.	The	theory	tells	us	that

as	we	approach	the	critical	point,	the	correlation	length	diverges.	This	is	the	typical	distance	over	which

fluctuations	in	the	microscopic	degrees	of	freedom	are	correlated.	As	this	length	scale	increases,	fluctuations

become	more	relevant,	and	the	mean	field	approximation,	which	ignores	fluctuations,	weakens.	Mean	field	theory

cannot	fully	describe	continuous	phase	transitions	because	of	this	failure	near	criticality	Another	approach	is

needed	for	a	full	statistical	mechanical	treatment	of	the	phenomenon.	As	mentioned,	there	was	also	a	deeper

conceptual	obstacle	to	a	statistical	mechanics	of	phase	transitions.	If	one	adopts	the	definition	of	phase	transitions

employed	by	thermodynamics,	then	phase	transitions	in	statistical	mechanics	do	not	seem	possible.	The

impossibility	claim	can	be	explained	very	easily.	As	mentioned	above,	thermodynamic	functions	are	determined	by

the	partition	function.	For	instance,	the	Helmholtz	free	energy	is	given	by:	(3)

where	k	is	Boltzmann's	constant,	T	is	the	temperature	of	the	system,	and	Z	is	the	canonical	partition	function:	(4)

with	E 	labeling	the	different	possible	mechanical	energies	of	the	system.	Recall	the	definition	of	a	phase	transition

according	to	thermodynamics:

(Def	1)	An	equilibrium	phase	transition	is	a	nonanalyticity	in	the	free	energy.

Depending	on	the	context,	one	might	choose	a	nonanalyticity	in	a	different	thermodynamic	potential;	however,	that

freedom	will	not	affect	matters	here.

As	natural	as	it	is,	Def	1	makes	a	phase	transition	seem	unattainable	in	statistical	mechanics.	The	reason	is	that

each	of	the	exponential	functions	in	(4)	is	analytic,	the	partition	function	is	just	a	sum	of	exponentials,	and	the	free

energy	essentially	is	just	the	logarithm	of	this	sum.	Since	a	sum	of	analytic	functions	is	itself	analytic	and	the

logarithm	of	an	analytic	function	itself	analytic,	the	Helmholtz	free	energy,	expressed	in	terms	of	the	logarithm	of

the	partition	function,	will	also	be	analytic.	Hence,	there	will	be	no	phase	transitions	as	defined	by	Def	1.	Since	the

same	reasoning	can	be	applied	to	any	thermodynamic	function	that	is	an	analytic	function	of	the	canonical

partition	function	modifications	of	Def	1	to	other	thermodynamic	functions	will	not	work	either.	(For	a	rigorous	proof

of	the	above	claims,	see	Griffiths	(1972).)

In	the	standard	lore	of	the	field,	this	problem	was	resolved	when	Onsager	in	1944	demonstrated	for	the	first	time	the

existence	of	a	phase	transition	from	nothing	but	the	partition	function.	He	did	this	rigorously	for	the	two-dimensional

Ising	model	with	no	external	magnetic	field.	How	did	Onsager	manage	the	impossible?	He	worked	in	the

thermodynamic	limit	of	the	system.	This	is	a	limit	where	the	number	of	particles	in	the	system	N	and	the	volume	of

the	system	V	go	to	infinity	while	the	density	ρ	=	N/V	is	held	fixed.	Letting	N	go	to	infinity	is	the	crucial	trick	in	getting

around	the	“impossibility”	claim.	The	claim	depends	on	the	sum	of	exponentials	in	(4)	being	finite.	Any	finite	sum	of

analytic	functions	will	be	analytic.	Once	this	restriction	is	removed,	however,	it	is	possible	to	find	nonanalyticities	in

the	free	energy.	The	apparent	lesson	is	that	statistical	mechanics	can	describe	phase	transitions,	but	only	in

n
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infinite	particle	systems.

It	is	common	to	visualize	what	is	going	on	in	terms	of	the	Yang-Lee	theorem.	The	free	energy	is	a	logarithm	of	the

partition	function,	so	it	will	exhibit	a	singularity	where	the	partition	function	goes	to	zero.	But	the	partition	function	is

a	polynomial	of	finite	degree	with	all	positive	coefficients,	so	it	has	no	real	positive	roots.	Instead	the	roots	are

imaginary	and	the	zeros	of	the	partition	function	must	be	plotted	on	the	complex	plane.	The	Yang-Lee	theorem,	for

a	two-dimensional	Ising	model,	says	that	these	zeros	sit	on	the	unit	sphere	in	the	complex	plane.	As	the	number	of

particles	increases,	the	zeros	become	denser	on	the	unit	sphere	until	at	the	thermodynamic	limit	they	intersect	the

positive	real	axis.	Since	a	real	zero	of	the	partition	function	is	only	possible	in	this	limit,	it	is	only	in	this	limit	that	we

can	have	a	phase	transition	(understood	as	in	Def	1).

An	alternative	definition	of	phase	transitions	is	sometimes	used,	one	proposed	by	Lebowitz	(1999).	A	phase

transition	occurs,	on	this	definition,	just	in	case	the	Gibbs	measure	(a	generalization	of	the	canonical	ensemble)	is

nonunique	for	the	system.	This	corresponds	to	a	coexistence	of	distinct	phases	and	therefore	a	phase	transition.

Using	this	alternative	definition,	however,	will	not	change	philosophical	matters.	The	Gibbs	measure	can	only	be

nonunique	in	the	thermodynamic	limit,	just	as	Def	1	can	only	be	satisfied	in	the	thermodynamic	limit.	That	said,	this

way	of	looking	at	the	issue	perhaps	makes	it	easier	to	see	the	similarities	between	the	foundational	issues	raised	by

phase	transitions	and	those	raised	by	spontaneous	symmetry	breaking.

1.3	Renormalization	Group	Theory

We	mentioned	in	the	previous	section	that	mean	field	theory	fails	near	the	critical	point	for	certain	systems

because	it	neglects	the	importance	of	fluctuations	in	this	regime.	Dealing	with	this	strongly	correlated	regime

required	the	introduction	of	a	new	method	of	analysis,	imported	from	particle	physics.	This	is	the	renormalization

group	method.	While	mean	field	theory	hews	to	tools	and	forms	of	explanation	that	are	orthodox	in	statistical

mechanics,	such	as	determining	aggregate	behavior	by	taking	ensemble	averages,	renormalization	group	theory

introduced	a	somewhat	alien	approach	with	tools	more	akin	to	those	of	dynamical	systems	theory	than	statistical

mechanics.

To	explain	the	method,	we	return	to	our	stalwart	Ising	model.	Suppose	we	coarse-grain	a	2-D	Ising	model	by

replacing	3	×	3	blocks	of	spins	with	a	single	spin	pointing	in	the	same	direction	as	the	majority	in	the	original	block.

This	gives	us	a	new	Ising	system	with	a	longer	distance	between	lattice	sites,	and	possibly	a	different	coupling

strength.	You	could	look	at	this	coarse-graining	procedure	as	a	transformation	in	the	Hamiltonian	describing	the

system.	Since	the	Hamiltonian	is	characterized	by	the	coupling	strength,	we	can	also	describe	the	coarse-graining

as	a	transformation	in	the	coupling	parameter.	Let	K	be	the	coupling	strength	of	the	original	system	and	R	be	the

relevant	transformation.	The	new	coupling	strength	is	K′	=	RK.	This	coarse-graining	procedure	could	be	iterated,

producing	a	sequence	of	coupling	parameters,	each	related	to	the	previous	one	by	the	transformation	R.	The

transformation	defines	a	flow	on	parameter	space.

How	does	this	help	us	ascertain	the	critical	behavior	of	a	system?	If	you	look	at	an	Ising	system	at	its	critical	point,

you	will	see	clusters	of	correlated	spins	of	all	sizes.	This	is	a	manifestation	of	the	diverging	correlation	length.	Now

squint,	blurring	out	the	smaller	clusters.	The	new	blurry	system	that	you	see	will	have	the	same	general	structure

as	the	old	one.	You	will	still	see	clusters	of	all	sizes.	This	sort	of	scale	invariance	is	characteristic	of	critical

behavior.	The	system	has	no	characteristic	length	scale.	Coarse-graining	produces	a	new	system	that	is

statistically	identical	to	the	old	one.	At	this	point,	the	Hamiltonian	of	the	system	remains	the	same	under	indefinite

coarse-graining,	so	it	must	be	a	fixed	point	in	parameter	space	(i.e.,	a	point	K 	such	that	K 	=	RK ).	The	nontrivial

(viz.,	not	K	=	0	or	K	=	∞)	fixed	points	of	the	flow	characterize	the	Hamiltonian	of	the	system	at	the	critical	point,	the

point	at	which	correlation	length	diverges	and	there	is	no	characteristic	scale	for	the	system.	The	critical

exponents	can	be	calculated	by	series	expansions	near	the	critical	point.	Critical	exponents	predicted	by

renormalization	group	methods	agree	with	experiment	much	more	than	the	predictions	of	mean	field	theory.

The	same	approach	can	be	applied	to	systems	with	more	complicated	Hamiltonians	involving	a	number	of	different

parameters.	Some	of	these	parameters	will	be	relevant,	which	means	they	get	bigger	as	the	system	is	rescaled.	If	a

system	has	a	nonzero	value	for	some	relevant	parameter,	then	it	will	not	settle	at	a	nontrivial	fixed	point	upon

rescaling,	since	rescaling	will	amplify	the	relevant	parameter	and	therefore	change	the	couplings	in	the	system.	At

criticality,	then,	the	relevant	parameters	must	be	zero.	An	example	of	a	relevant	parameter	for	the	Ising	system	is
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the	reduced	temperature	t.	If	t	=	0,	the	system	can	flow	to	a	nontrivial	fixed	point.	However,	if	t	is	perturbed	from

zero,	the	system	will	flow	away	from	this	critical	fixed	point	toward	a	trivial	fixed	point.	So	a	continuous	transition

only	takes	place	when	t	=	0,	which	is	at	the	critical	temperature.	Other	parameters	might	turn	out	to	be	irrelevant	at

large	scales.	They	will	get	smaller	and	smaller	with	successive	coarse-grainings,	effectively	disappearing	at

macroscopic	scales.	This	elimination	of	microscopic	degrees	of	freedom	means	that	the	renormalization	group

transformation	can	be	irreversible	(which	would,	strictly	speaking,	make	it	a	semi-group	rather	than	a	group),	and

there	can	be	attractors	in	parameter	space.	These	are	fixed	points	into	which	a	number	of	microscopically	distinct

systems	flow.	This	is	the	basis	of	universality,	the	shared	critical	behavior	of	quite	different	sorts	of	systems.	If	the

systems	share	a	fixed	point	their	critical	exponents	will	be	the	same,	even	if	their	microscopic	Hamiltonians	are

distinct.	The	differences	in	the	Hamiltonians	are	in	irrelevant	degrees	of	freedom	that	do	not	affect	the	macroscopic

critical	behavior	of	the	system.	Systems	that	flow	to	the	same	nontrivial	fixed	point	are	said	to	belong	to	the	same

universality	class.	The	liquid–gas	transition	in	water	is	in	the	same	universality	class	as	the	paramagnetism–

ferromagnetism	transition.	They	have	the	same	critical	exponents,	despite	the	evident	differences	between	the

systems.

The	difference	between	relevant	and	irrelevant	parameters	can	be	conceptualized	geometrically.	In	parameter

space,	if	we	restrict	ourselves	to	the	hypersurface	on	which	all	relevant	parameters	are	zero,	so	that	the

differences	between	systems	on	this	hypersurface	are	purely	due	to	irrelevant	parameters,	then	all	points	on	the

hypersurface	will	flow	to	a	single	fixed	point.	Perturb	the	system	so	that	it	is	even	slightly	off	the	hypersurface,

however,	and	the	flow	will	take	it	to	a	different	fixed	point.

It	is	significant	that	the	fixed	point	only	appears	when	the	system	has	no	characteristic	length	scale.	This	is	why	the

infinite	particle	limit	is	crucial	to	the	renor-malization	group	approach.	If	the	number	of	particles	is	finite,	then	there

will	be	a	characteristic	length	scale	set	by	the	size	of	the	system.	Coarse-graining	beyond	this	length	will	no	longer

give	us	statistically	identical	systems.	The	possibility	of	invari-ance	under	indefinite	coarse-graining	requires	an

infinite	system.	The	requirement	for	the	thermodynamic	limit	in	renormalization	group	theory	can	be	perspicuously

connected	to	the	motivation	for	this	limit	in	the	standard	statistical	mechanical	story.	The	correlation	length	of	a

system	near	its	critical	point	can	be	characterized	in	terms	of	some	second	derivative	of	a	thermodynamic

potential.	For	instance,	in	a	magnetic	system	the	range	of	correlations	between	parts	of	the	system	is	proportional

to	the	susceptibility,	a	second	derivative	of	the	free	energy.	On	the	thermodynamic	treatment,	the	susceptibility

diverges	as	we	approach	the	critical	point,	and	according	to	the	statistical	mechanical	treatment	this	is	impossible

unless	we	are	in	the	thermo-dynamic	limit.	This	means	the	correlation	length	cannot	diverge,	as	is	required	for

renormalization	group	methods	to	work,	unless	the	system	is	infinite.

2.	The	Emergence	of	Phase	Transitions?

All	of	the	above	should	sound	a	little	troubling.	After	all,	the	systems	we	are	interested	in,	the	systems	in	which	we

see	phase	transitions	every	day,	are	not	infinite	systems.	Yet	the	physics	of	phase	transitions	seems	to	make

crucial	appeal	to	the	infinitude	of	the	systems	modeled.	It	appears	that,	according	to	both	statistical	mechanics	and

renormalization	group	theory,	phase	transitions	cannot	occur	in	finite	systems.	Additionally,	the	explanation	of	the

universal	behavior	of	systems	near	their	critical	point	seems	to	require	the	infinite	idealization.	Considerations	of

this	sort	have	led	many	authors	to	say	that	phase	transitions	are	genuinely	emergent	phenomena,	suggesting	that

statistical	mechanics	cannot	provide	a	full	reductive	account	of	phase	transitions	in	finite	systems.	The	eminent

statistical	mechanic	Lebowitz	says	phase	transitions	are	“paradigms	of	emergent	behavior”	(Lebowitz,	1999,	S346)

and	the	philosopher	Liu	says	they	are	“truly	emergent	properties”	(Liu,	1999,	S92).

Needless	to	say,	if	this	claim	is	correct,	phase	transitions	present	a	challenge	to	philosophers	with	a	reductionist

bent.	The	extent	of	this	challenge	depends	on	how	we	interpret	the	claim	of	emergence.	The	concept	of

“emergence”	is	notoriously	slippery,	interpreted	differently	by	different	authors.	We	will	consider	a	number	of

different	arguments	for	phase	transitions	being	emergent,	corresponding	to	varying	conceptions	of	emergence.

What	these	arguments	have	in	common	is	that	they	all	involve	a	rejection	of	what	Andrew	Melnyk	has	called

“reductionism	in	the	core	sense”	(Melnyk,	2003,	83).	This	is	the	intuitive	conception	of	reduction	that	underlies

various	more	precise	philosophical	accounts	of	reduction.	A	theory	T 	reduces	to	a	lower-level	theory	T 	if	all	the

nomic	claims	made	by	T 	can	be	explained	using	only	the	resources	of	T 	and	necessary	truths.
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This	conception	is	deliberately	vague,	allowing	for	various	precisifications	depending	on	one's	theory	of

explanation	and	how	one	delineates	the	explanatory	resources	available	to	a	particular	theory.	One	possible

precisification	is	Ernest	Nagel's	account	of	reduction	(Nagel,	1979),	which	says	that	T 	reduces	T 	if	and	only	if	the

laws	of	the	latter	can	be	deduced	from	the	laws	of	the	former	in	conjunction	with	appropriate	bridge	laws.	In	this

account	the	core	sense	of	reduction	has	been	filled	out	with	a	logical	empiricist	theory	of	explanation	according	to

which	the	explanatory	resources	of	a	theory	are	the	deductive	consequences	of	its	lawlike	statements.	It	is

important	to	recognize	that	reductionists	are	committed	to	this	account	of	reduction	only	insofar	as	endorse	such	a

theory	of	explanation.	The	proper	motivation	for	Nagel's	theory	lies	in	the	extent	to	which	it	successfully	captures

the	core	sense	of	reduction.

In	this	chapter	we	do	not	endorse	any	particular	account	of	reduction.	Instead	we	consider	three	broad	ways	in

which	the	explanatory	connection	between	a	higher-level	theory	and	a	lower-level	theory	may	break	down,	and

examine	the	extent	to	which	these	explanatory	breakdowns	are	manifested	in	the	case	of	phase	transitions.

Whether	we	have	a	genuine	explanatory	failure	in	a	particular	instance	will	depend	on	the	details	of	our	account	of

explanation.	Often,	the	reductionist	may	be	able	to	avoid	a	counterexample	by	simply	reconceiving	what	counts	as

an	adequate	explanation. 	However,	certain	instances	will	be	regarded	as	explanatory	failures	under	a	wide

variety	of	plausible	accounts	of	explanation,	perhaps	even	under	all	plausible	accounts	of	explanation.	The

weaker	the	assumptions	about	explanation	required	for	the	counterexample	to	work,	the	stronger	the	case	for

emergentism.	We	can	arrange	our	examples	of	purported	explanatory	failure	into	a	hierarchy	based	on	the

constraints	placed	on	an	account	of	explanation.

At	the	bottom	of	this	hierarchy	(at	least	for	the	purposes	of	this	chapter)	is	conceptual	novelty.	This	is	the	sort	of

“irreducibility”	involved	when	there	is	some	natural	kind	in	the	higher-level	theory	that	cannot	be	equated	to	a

single	natural	kind	in	the	lower-level	theory.	It	may	be	the	case	that	the	phenomena	that	constitute	the	higher-level

kind	can	be	individually	explained	by	the	lower-level	theory,	but	the	theory	does	not	unite	them	as	a	single	kind.

Conceptual	novelty	involves	a	failure	of	type–type	reduction,	but	need	not	involve	a	failure	of	token–token

reduction.	In	the	case	of	phase	transitions,	it	has	been	suggested	that	although	one	can	provide	a	perfectly

adequate	explanation	of	individual	transitions	using	statistical	mechanics,	the	theory	does	not	distinguish	these

phenomena	as	a	separate	kind.	For	instance,	from	the	perspective	of	statistical	mechanics,	the	transition	from	ice

to	water	in	a	finite	system	as	we	cross	273.16	K	is	not	qualitatively	different	from	the	transition	from	cold	ice	to

slightly	warmer	ice	as	we	cross	260	K,	at	least	if	something	like	the	standard	story	is	correct.	The	only	difference	is

that	the	thermodynamic	potentials	change	a	lot	more	rapidly	in	the	former	situation	than	in	the	latter,	but	they	are

still	analytic,	so	this	is	merely	a	difference	of	degree,	not	a	difference	of	kind.

There	are	two	tacks	one	can	take	in	response	to	this	observation.	The	first	is	that	this	is	a	case	where	statistical

mechanics	corrects	thermodynamics.	Just	as	it	showed	us	that	the	second	law	is	not	in	principle	exceptionless,	it

shows	us	that	rigorous	separation	of	phases,	the	only	phenomenon	worthy	of	the	name	“phase	transition,”	is	only

possible	in	infinite	systems.	This	view	of	the	emergence	of	phase	transitions	is	expressed	by	Kadanoff	when	he

says	that	“in	some	sense	phase	transitions	are	not	exactly	embedded	in	the	finite	world	but,	rather,	are	products	of

the	human	imagination”	(Kadanoff	2009,	778).	Thermodynamics	classifies	a	set	of	empirical	phenomena	as	phase

transitions,	involving	a	qualitatively	distinct	type	of	change	in	the	system.	Statistical	mechanics	reveals	that	these

phenomena	have	been	misclassified.	They	are	not	genuinely	qualitatively	distinct	and	should	not	be	treated	as	a

separate	natural	kind.	This	response	does	not	appear	to	pose	much	of	a	threat	to	reductionism.	It	may	be	true	that

thermodynamics	has	not	been	reduced	to	statistical	mechanics	in	a	strict	Nagelian	sense,	but	this	seems	like	much

too	restrictive	a	conception	of	reduction.	There	are	many	paradigmatic	cases	of	scientific	reduction	where	the

reducing	theory	explains	a	corrected	version	of	the	reduced	theory,	not	the	theory	in	its	original	form.	This

correction	may	often	involve	dissolving	inappropriate	distinctions.	If	this	is	all	there	is	to	the	challenge	of

conceptual	novelty,	it	is	not	much	of	a	challenge.

However,	one	might	want	to	resist	this	eliminativism	and	reject	the	notion	that	thermodynamics	has	misclassified

phenomena.	Perhaps	the	right	thing	to	say	is	that	at	the	thermodynamic	level	of	description	it	is	indeed	appropriate

to	have	a	distinct	kind	corresponding	to	phase	transitions	in	finite	systems.	But	the	appropriateness	of	this	kind	is

invisible	at	the	statistical	mechanical	level	of	description,	since	statistical	mechanics	does	not	have	the	resources

to	construct	such	a	class.	This	is	a	more	substantive	challenge	to	reductionism,	akin	to	cases	of	multiple

realizability.	As	an	analogy,	consider	that	from	the	perspective	of	our	molecular	theory	there	is	no	natural	kind	(or

indeed	finite	disjunction	of	kinds)	corresponding	to	the	category	“can	opener.”	It	seems	implausible	that	we	will	be
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able	to	delineate	the	class	of	can	openers	using	only	the	resources	of	our	microscopic	theory.	Yet	we	do	not	take

this	to	mean	that	our	microscopic	theory	corrects	our	macroscopic	theory,	demonstrating	that	can	openers	do	not

exist	as	a	separate	kind.	Can	openers	do	exist.	They	are	an	appropriate	theoretical	kind	at	a	certain	level	of

description.	Similarly,	the	fact	that	statistical	mechanics	does	not	have	the	resources	to	delineate	the	class	of	finite

particle	phase	transitions	need	not	lead	us	to	conclude	that	this	classification	is	bogus.

How	might	the	reductionist	respond	to	conceptual	novelty	of	this	sort?	One	response	would	be	to	develop	a	sense

of	explanation	that	makes	reduction	compatible	with	multiple	realization.	Even	though	statistical	mechanics	does

not	group	phase	transitions	together	the	way	that	thermodynamics	does,	it	is	still	able	to	fully	explain	what	goes	on

in	individual	instances	of	phase	transition.	Perhaps	the	existence	of	individual	explanations	in	every	case

constitutes	an	adequate	explanation	of	the	nomic	pattern	described	by	thermodynamics.	If	this	is	the	case,	the

core	sense	of	reduction	is	satisfied.	One	does	not	need	to	look	at	phase	transitions	to	notice	that	any	claim	about

the	reduction	of	thermodynamics	to	statistical	mechanics	must	be	based	on	a	conception	of	reduction	that	is

compatible	with	multiple	realizability.	Temperature,	that	most	basic	of	thermodynamic	properties,	is	not	(the	claims

of	numerous	philosophers	notwithstanding)	simply	“mean	molecular	kinetic	energy.”	It	is	a	multiply	realizable

functional	kind.	If	our	notion	of	reduction	precludes	the	existence	of	such	properties,	then	the	project	of	reducing

thermodynamics	cannot	even	get	off	the	ground.

To	us,	this	seems	like	the	correct	response	to	claims	of	emergence	based	on	the	conceptual	novelty	of	phase

transitions.	If	this	is	all	it	takes	for	emergence,	then	practically	every	thermodynamic	property	is	emergent.	Perhaps

the	emergentist	is	willing	to	bite	this	bullet,	but	we	think	it	is	more	plausible	that	the	argument	from	conceptual

novelty	to	emergence	relies	on	a	much	too	restrictive	conception	of	scientific	explanation.	It	is,	however,	worth

noting	another	line	of	response.	It	may	be	the	case	that	a	class	of	finite	particle	phase	transitions	can	be

constructed	within	statistical	mechanics	that	overlaps	somewhat	(but	not	completely)	with	the	ther-modynamic

classification.	This	would	be	a	case	of	statistical	mechanics	correcting	thermodynamics,	but	not	by	eliminating	the

phenomenon	of	phase	transitions	in	finite	systems.	Instead,	statistical	mechanics	would	redefine	phase	transitions

in	a	manner	that	preserves	our	judgments	about	a	number	of	empirical	instances	of	the	phenomenon.	If	such	a

redefinition	could	be	engineered,	phase	transitions	would	not	be	conceptually	novel	to	thermodynamics.	The

prospects	for	this	strategy	are	discussed	in	section	3.1.

Let	us	suppose	our	conception	of	reduction	is	broad	enough	that	mere	conceptual	novelty	does	not	indicate	a

failure	of	reduction.	We	accept	with	equanimity	that	under	certain	conditions	it	might	be	appropriate	to	model

phenomena	using	a	conceptual	vocabulary	distinct	from	that	of	our	reducing	theory.	For	instance,	at	a	sufficiently

coarse-grained	level	of	description	a	certain	set	of	thermody-namic	transformations	is	fruitfully	modeled	as

exhibiting	singular	behavior,	and	appropriately	grouped	together	into	a	separate	natural	kind.	However,	one	might

not	think	that	a	fully	reductive	explanation	has	been	given	unless	one	can	explain	using	the	resources	of	the

reducing	theory	why	this	model	is	so	effective	under	those	conditions.	Why	does	modeling	a	finite	particle	phase

transition	as	nonanalytic	work	so	well	at	the	thermodynamic	level	of	description	if	finite	systems	cannot	exhibit	non-

analyticities	at	the	statistical	mechanical	level	of	description?	If	we	cannot	give	such	an	explanation,	we	have

another	potential	variety	of	emergence:	explanatory	irreducibility.

To	give	an	idea	of	the	kind	of	story	we	are	looking	for,	consider	the	infinite	idealization	involved	in	explaining	the

extensivity	of	certain	thermodynamic	properties.	Many	thermodynamic	properties	are	extensive,	such	as	the

entropy,	internal	energy,	volume,	and	free	energy.	What	this	means	is	that	if	we	divide	a	system	into	macroscopic

parts,	the	values	of	those	properties	behave	in	an	additive	way.	Loosely	put,	if	we	double	the	size	of	the	system

(that	is,	double	internal	energy,	particle	number,	volume),	then	we	double	that	system's	extensive	properties	(e.g.,

the	entropy). 	Intensive	properties,	by	contrast,	do	not	scale	this	way;	for	example,	if	we	double	the	size	of	a

system,	we	do	not	double	the	pressure.	Extensivity	and	intensivity	are	features	usefully	employed	by

phenomenological	thermodynamics.	However,	when	we	look	at	a	system	microscopically,	we	quickly	see	that	no

finite	system	is	ever	strictly	extensive	or	intensive.	Correlations	exist	between	the	particles	in	one	part	of	a	system

and	another	part.	If	we	want	to	reproduce	the	thermody-namic	distinction	exactly,	we	are	stymied:	no	matter	how

large	the	system,	if	it	is	finite,	surface	effects	contribute	to	the	partition	function,	which	will	mean	that	systems’

energies	and	entropies	cannot	be	neatly	halved.	For	instance,	if	we	define	the	entropy	as	a	function	over	the	joint

probability	distributions	involved	(as	with	the	Gibbs	entropy),	we	see	that	the	entropy	is	extensive	only	when	the

two	subsystems	are	probabilistically	independent	of	one	another.	The	only	place	we	can	reproduce	the	sharp

distinction	is	by	going	to	the	thermodynamic	limit.	There	we	can	define	a	variable	f	as	extensive	if	f	goes	to	infinity

2

3



Turn and Face The Strange … Ch-Ch-Changes

Page 9 of 24

as	we	approach	the	thermodynamic	limit	while	f/V	is	constant	in	the	limit,	where	V	is	the	volume	of	the	system.

Strictly	speaking,	only	in	infinite	systems	are	entropy,	energy,	and	so	on,	truly	extensive.

Does	this	fact	imply	that	there	is	a	great	mystery	about	extensivity,	that	exten-sivity	is	truly	emergent,	that

thermodynamics	does	not	reduce	to	finite	N	statistical	mechanics?	We	suggest	that	on	any	reasonably

uncontentious	way	of	defining	these	terms,	the	answer	is	no.	We	know	exactly	what	is	happening	here.	Just	as	the

second	law	of	thermodynamics	is	no	longer	strict	when	we	go	to	the	microlevel,	neither	is	the	concept	of

extensivity.	The	notion	of	extensivity	is	an	idealization,	but	it	is	one	approximated	well	by	finite	particle	statistical

mechanics.	For	boxes	of	length	l	containing	particles	interacting	via	short-range	forces,	the	surface	effects	scale

as	l 	and	the	volume	as	l .	Surface	effects	become	less	and	less	important	as	the	system	gets	larger.	Beings

restricted	to	macroscopic	physics	would	do	well	to	call	upon	the	extensive/intensive	distinction,	since	in	most

cases	the	impact	of	surface	effects	would	be	well	beyond	the	precision	of	measurements	made	by	such	beings.

Here	we	see	that	extensivity	in	finite	systems	is	conceptually	novel	to	thermodynamics.	It	does	not	exist	in

statistical	mechanics.	However,	leaving	the	story	there	is	unsatisfactory.	We	need	a	further	account,	from	a

statistical	mechanical	perspective,	of	why	this	new	concept	works	so	well	in	thermodynamics.	And	indeed	such	a

story	is	forthcoming.	It	relies	crucially	on	the	fact	that	the	resolution	of	our	measurements	is	limited,	but	this	in	itself

does	not,	or	at	least	should	not,	derail	the	reductionist	project.	As	long	as	we	have	a	story	that	explains	why	beings

with	such	limitations	could	fruitfully	describe	sufficiently	large	systems	as	extensive—a	story	in	terms	of	the

components	of	the	system	and	their	organization,	and	how	relevant	quantities	scale	as	the	system	gets	larger—we

do	not	have	a	genuine	challenge	to	reductionism	in	the	core	sense.

The	question	is	whether	a	similar	sort	of	explanation	is	available	to	account	for	the	efficacy	of	the	infinite

idealization	involved	in	the	statistical	mechanical	analysis	of	phase	transitions.	If	there	is	not,	we	would	have	a

case	for	emergence.	There	would	be	something	about	the	systems	under	consideration	that	could	not	be

accounted	for	reductively,	namely,	the	fact	that	their	behavior	at	a	phase	transition	can,	under	certain	conditions,

be	adequately	modeled	as	the	behavior	of	an	infinite	system.	This	feature	of	finite	systems	is	crucial	to

understanding	their	behavior	at	phase	transitions,	so	if	it	cannot	be	explained	it	would	be	legitimate	to	say	that

phase	transitions	are	emergent.	In	section	3.2	we	examine	the	possibility	of	a	reductive	explanation	of	the	efficacy

of	the	infinite	idealization.

Modeling	the	behavior	of	particular	systems	is	not	the	only	function	of	the	infinite	idealization	in	the	study	of	phase

transitions.	The	idealization	plays	a	central	role	in	the	renormalization	group	explanation	for	universal	behavior	at

the	critical	point.	As	we	have	discussed	above,	universal	behavior	is	accounted	for	by	the	presence	of	stable	fixed

points	in	the	space	of	Hamiltonians,	each	of	which	is	the	terminus	of	a	number	of	different	renormalization	flow

trajectories.	This	sort	of	explanation	raises	special	problems	that	do	not	arise	when	we	consider	the	sort	of	infinite

idealization	involved	in	the	assumption	of	extensivity.	There	we	have	a	property	that,	as	it	turns	out,	can	only	be

approximated	by	finite	systems.	It	is	only	actually	instantiated	in	infinite	systems.	However,	the	property	itself	can

be	characterized	without	recourse	to	the	infinite	idealization.	We	could	in	principle	construct	an	explanation	of	why

a	finite	thermodynamic	system	approximates	extensive	behavior	without	any	appeal	to	the	infinite	idealization.	The

idealization	gives	us	a	model	of	a	genuinely	extensive	system,	but	it	is	not	essential	to	an	understanding	of	why	it

is	useful	to	treat	macroscopic	finite	systems	as	extensive.

It	appears	that	the	situation	is	different	when	we	consider	the	renormalization	group	explanation	of	universality.

There,	the	infinite	idealization	plays	a	different	role.	Talking	about	how	a	particular	large	finite	system	approximates

the	behavior	of	an	infinite	system	will	not	be	helpful,	because	universality	is	not	about	the	behavior	of	individual

systems,	finite	or	infinite.	It	is	a	characteristic	of	classes	of	systems.	The	renormalization	group	method	explains

why	physical	systems	separate	into	distinct	universality	classes,	and	it	explains	this	in	terms	of	certain	structural

features	of	the	space	of	systems,	the	fixed	points	of	the	renormalization	flow.	It	is	the	existence	of	these	features,

and	their	connection	to	the	phenomenon	of	universality,	that	requires	the	infinite	idealization.	We	might	be	able	to

give	an	account	of	why	a	particular	large	finite	system	approaches	very	close	to	a	fixed	point	as	it	is	rescaled,

approximating	the	behavior	of	an	infinite	system,	but	this	will	not	tell	us	why	this	behavior	matters.	In	order	to	see

the	connection	between	approaching	a	fixed	point	and	exhibiting	universal	behavior,	we	need	the	infinite

idealization.	This	argument	is	made	in	Batterman	(2011).	We	address	it	in	section	4.

In	a	case	of	explanatory	irreducibility	the	higher-level	theory	models	a	particular	phenomenon	in	a	conceptually

novel	manner,	and	the	efficacy	of	this	model	cannot	be	explained	by	the	lower-level	theory.	However,	this	does

3
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not	preclude	the	possibility	that	the	phenomenon	can	be	modeled	within	the	lower-level	theory	in	a	different	way.

There	may	be	aspects	of	the	phenomenon	(such	as,	say,	its	macroscopic	similarity	to	other	phenomena)	that

cannot	be	captured	by	the	descriptive	resources	of	the	theory,	but	the	phenomenon	itself	can	be	described	by	the

theory.	Consider,	for	instance,	the	relationship	between	neuroscience	and	folk	psychology.	It	might	be	argued	that

the	latter	is	explanatorily	irreducible	to	the	former.	Perhaps	there	is	no	viable	neuroscientific	account	of	why	the

reasons	explanations	common	in	folk	psychology	are	successful,	but	a	materialist	about	the	mind	could	maintain

that	this	is	merely	because	the	neuroscientific	theory	operates	at	too	fine	a	scale	to	discern	the	patterns	that

ground	this	sort	of	explanation.	In	every	token	instance	covered	by	the	folk	psychological	explanation,	there	is

nothing	relevant	going	on	that	is	not	captured	by	neuroscience.	It	is	just	that	the	way	neuroscience	describes	what

is	going	on	is	not	conducive	to	the	construction	or	justification	of	reasons	explanations.	The	patterns	that	the

neuroscientific	description	fails	to	see	are	nonetheless	wholly	generated	by	processes	describable	using

neuroscience.

A	substance	dualist,	however,	would	argue	that	there	is	an	even	deeper	failure	of	reduction	going	on	here.	The

phenomena	and	processes	described	by	neuroscience	are	by	themselves	inadequate	to	even	generate	the	kinds

of	patterns	that	characterize	reasons	explanations.	This	is	because	the	lower-level	theory	does	not	have	the

resources	to	describe	a	crucial	element	of	the	ontological	furniture	of	the	situation,	the	mind	or	the	soul.	Here	we

have	more	than	a	mere	case	of	explanatory	irre-ducibility.	We	may	call	cases	like	this,	where	the	lower-level

theory	cannot	even	fully	describe	a	phenomenon	that	can	be	modeled	by	the	higher-level	theory,	examples	of

ontological	irreducibility.

This	is	probably	the	sense	in	which	the	British	emergentists	conceived	of	emergence	(see	McLaughlin	(1992)	for	an

illuminating	analysis	of	this	school	of	thought).	With	reference	to	phase	transitions,	this	view	is	perhaps	most	starkly

expressed	in	Batterman	(2005).	Batterman	argues	that	the	discontinuity	in	the	thermodynamic	potential	at	a	phase

transition	is	not	an	artifact	of	a	particular	mathematical	representation	of	the	physical	phenomenon	but	is	a	feature

of	the	physical	phenomenon	itself.	He	says,	“My	contention	is	that	thermodynamics	is	correct	to	characterize

phase	transitions	as	real	physical	discontinuities	and	it	is	correct	to	represent	them	mathematically	as	singularities”

(ibid.,	234).	If	there	are	genuine	discontinuities	in	physical	systems,	it	seems	we	could	not	represent	them

accurately	using	only	continuous	mathematical	functions.	So,	since	the	statistical	mechanics	of	finite	systems	does

not	give	us	discontinuities,	it	is	incapable	of	fully	describing	this	physical	phenomenon.	We	can	only	approach	an

explanation	of	the	phenomenon	by	working	in	the	infinite	limit.	The	idealization	is	a	manifestation	of	the	inability	of

the	theory	to	fully	describe	the	phenomenon	of	phase	transitions	in	finite	systems.	We	discuss	these	ideas	further

in	section	3.3.

In	the	remainder	of	this	chapter,	we	discuss	the	status	of	these	three	notions	of	emergence—conceptual	novelty,

explanatory	irreducibility,	and	ontological	irreducibility—as	they	apply	to	both	the	standard	statistical	mechanical

notion	of	phase	transitions	and	the	treatment	of	critical	phenomena	by	the	renormaliza-tion	group.	These	topics	are

treated	separately	because,	as	discussed	above,	the	renormalization	group	introduces	new	issues	bearing	on	the

topic	of	emergence	and	reduction	that	go	beyond	issues	involving	infinite	idealization	in	traditional	statistical

mechanics.

3.	The	Infinite	Idealization	in	Statistical	Mechanics

In	the	previous	section,	we	discussed	three	ways	in	which	the	relationship	between	statistical	mechanics	and

thermodynamics	might	be	nonreductive.	There	is	a	hierarchy	to	these	different	senses	of	emergence	set	by	the

varying	strengths	of	the	assumptions	about	explanation	required	in	order	for	them	to	represent	a	genuine	failure	of

the	core	sense	of	reduction.	Conceptual	novelty	is	the	weakest	notion	of	emergence,	explanatory	irreducibility	is

stronger,	and	ontological	irreducibility	is	stronger	still.	In	this	section,	we	discuss	the	case	that	can	be	made	for

phase	transitions	exemplifying	each	of	these	notions	of	emergence.	We	conclude	that	in	the	domain	of	ordinary

statistical	mechanics	(excluding	the	renormalization	group),	the	case	for	phase	transitions	being	either

ontologically	or	explanatorily	irreducible	is	weak.	The	case	for	phase	transitions	being	conceptually	novel	is

stronger,	but	even	here	there	are	questions	that	can	be	raised.

3.1	Conceptual	Novelty
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A	natural	kind	in	a	higher-level	theory	is	conceptually	novel	if	there	is	no	kind	in	any	potential	reducing	theory	that

captures	the	same	set	of	phenomena.	Are	thermodynamic	phase	transitions	conceptually	novel?	That	is,	does	the

kind	‘phase	transition’	have	a	natural	counterpart	kind	in	statistical	mechanics?	If	we	restrict	ourselves	to	finite	N

systems,	it	is	commonly	believed	that	there	is	not	a	kind	in	statistical	mechanics	corresponding	to	phase	transitions

and	that	one	can	only	find	such	a	kind	in	infinite	N	statistical	mechanics.	We	believe,	to	the	contrary,	that	no

theory,	infinite	or	finite,	statistical	mechanical	or	mechanical,	possesses	a	natural	kind	that	perfectly	overlaps

with	the	thermodynamic	natural	kind.	Yet	if	one	relaxes	the	demand	of	perfect	overlap,	then	there	are	kinds—

even	in	finite	N	statistical	mechanics—that	overlap	in	interesting	and	explanatorily	powerful	ways	with

thermodynamic	phase	transitions.	Strictly	speaking,	thermodynamic	phase	transitions	are	conceptually	novel;

more	loosely	speaking,	they	are	not.

To	begin,	one	might	wonder	in	what	sense	“phase	transition”	is	a	kind	even	in	thermodynamics.	After	all,	there	are

ambiguities	in	the	way	we	define	phases.	Is	glass	a	supercooled	liquid	or	a	solid?	It	depends	on	which	criteria	one

uses	and	no	set	seems	obviously	superior.	Be	that	as	it	may,	the	notion	of	a	transition	is	relatively	clear	in

thermodynamics,	and	it	is	defined,	as	above,	as	a	discontinuity	in	one	of	the	thermodynamic	potentials.	Let's	stick

with	this.

Now,	is	the	kind	picked	out	by	Def	1	the	counterpart	of	the	thermodynamic	definition?	Despite	many	claims	that	it

is,	Def	1's	extension	is	clearly	very	different	than	that	given	by	thermodynamics.	To	mention	the	most	glaring

difference—and	on	which,	more	later—there	are	many	systems	that	do	not	have	well-defined	ther-modynamic

limits.	Do	they	not	have	phase	transitions?	One	can	define	words	as	one	likes,	but	the	point	is	that	there	are	many

systems	that	suffer	abrupt	macroscopic	changes,	changes	that	thermodynamics	would	count	as	phase	transitions,

but	which	do	not	have	thermodynamic	limits.	Systems	with	very	long-range	interactions	are	prominent	examples.

But	in	fact	the	conditions	on	the	existence	of	a	thermody-namic	limit	are	numerous	and	stringent,	so	in	some	sense

most	systems	do	not	have	thermodynamic	limits.	A	strong	case	can	be	made	that	Def	1,	as	a	result,	provides	at

best	sufficient	conditions	for	a	phase	transition,	and	not	necessary	conditions.

How	does	finite	N	statistical	mechanics	fare?	The	conventional	wisdom	is	that	finite	N	statistical	mechanics	lacks

the	resources	to	have	counterparts	of	thermodynamics	phase	transitions.	However,	we	believe	that	people	often

assent	to	this	claim	too	quickly.	One	of	the	more	interesting	developments	in	statistical	mechanics	of	late	has	been

challenges	to	ordinary	statistical	mechanics	from	the	realms	of	the	very	large	and	the	very	small.	These	are

regimes	that	test	the	applicability	of	normal	Boltzmann-Gibbs	equilibrium	statistical	mechanics.	The	issues	arise

from	the	success	of	statistical	mechanical	techniques	in	new	areas.	In	cosmology,	statistical	mechanics	is	used	not

only	to	explain	the	inner	workings	of	stars	but	also	to	explain	the	statistical	distribution	of	galaxies,	clusters,	and

more.	In	these	cases,	the	force	of	interest	is	of	course	the	gravitational	force,	one	that	is	not	screened	at	short

distances	like	the	Coulomb	force.	Systems	like	this	do	not	have	a	well-defined	thermodynamic	limit,	often	are	not

approximately	extensive,	suffer	negative	heat	capacities,	and	more	(see	Callender	(2011)	for	discussion).	There

has	also	been	an	extension	of	statistical	mechanical	techniques	to	the	realm	of	the	small.	Sodium	clusters	obey	a

solidlike	to	liquidlike	“phase	transition,”	Bose-Einstein	condensation	occurs,	and	much	more.	These	atomic	clusters

have	been	surprisingly	amenable	to	statistical	mechanical	treatment,	yet	they	too	do	not	satisfy	the	conditions	for

the	application	of	the	thermodynamic	limit.	Physically,	one	way	to	think	about	what	is	happening	here	is	that	in

small	systems	a	much	higher	proportion	of	the	particles	reside	on	the	surface,	so	surface	effects	play	a	substantial

role	in	the	physics.	As	a	result,	these	systems	also	raise	issues	about	extensivity,	negative	specific	heats,	and

much	more.

These	systems	are	relevant	to	our	concerns	here	for	a	very	simple	reason:	they	appear	to	have	phase	transitions,

yet	lack	a	well-defined	thermodynamic	limit,	so	Def	1	seems	inadequate.	Orthogonal	to	our	philosophical	worries

about	reduction,	there	are	also	purely	physical	motivations	for	better	understanding	thermodynamic	phase

transitions	from	the	perspective	of	finite	statistical	mechanics.	Naturally,	some	physicists	appear	motivated	by	both

issues,	the	conceptual	and	the	physical:

Conceptually,	the	necessity	of	the	thermodynamic	limit	is	an	objectionable	feature:	first,	the	number	of	degrees	of

freedom	in	real	systems,	although	possibly	large,	is	finite,	and,	second,	for	systems	with	long-range	interactions,

the	thermodynamic	limit	may	even	be	not	well	defined.	These	observations	indicate	that	the	theoretical	description

of	phase	transitions,	although	very	successful	in	certain	aspects,	may	not	be	completely	satisfactory.	(Kastner

2008,	168)

4
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As	a	result	of	this	motivation,	there	are	already	several	proposals	for	finite-particle	accounts	of	phase	transitions.

These	are	sometimes	called	smooth	phase	transitions.	The	research	is	ongoing,	but	what	exists	already	provides

evidence	of	the	existence	of	thermodynamic	phase	transitions	in	finite	systems.	There	are	many	different	schemes,

but	we	will	concentrate	on	the	two	most	well	known.

3.1.1	Back-Bending

Figure	5.1 	Back-bending	of	the	caloric	curve.

Inspired	in	part	by	van	der	Waals	theory	and	its	S-shaped	bends,	this	theory	has	been	developed	by	Wales	and

Berry	(1994),	Gross	and	Votyakov	(2000)	and	Chomaz,	Gulminelli,	and	Duflot	(2001).	Unlike	in	the	traditional	theory

of	phase	transitions,	here	the	authors	work	with	the	microcanonical	ensemble,	not	the	canonical	ensemble.	The

general	idea	is	that	the	signatures	of	phase	transitions	of	different	orders	are	read	off	from	the	curvature	of	the

microcanonical	entropy,	S	=	k 	lnΩ(E),	where	Ω(E)	is	the	microcanonical	partition	function.	In	particular,	if	written	in

terms	of	the	associated	caloric	curve,	T(E)	=	1/∂	 	ln[Ω(E)],	we	can	understand	a	first-order	transition	as	a	“back-

bending”	curve,	where	for	a	given	value	of	T(E)	one	can	have	more	than	one	set	of	values	for	E/N	(see	figure	5.1).

For	our	illustrative	purposes,	we	will	use	this	as	our	definition:

(Def	2)	A	first-order	phase	transition	occurs	when	there	is	“back-bending”	in	the	microcanonical	caloric

curve.

Def	2	is	equivalent	to	the	entropy	being	convex	or	the	heat	capacity	being	negative	for	certain	values.	As

expected,	back-bending	can	be	seen	in	finite-N	systems.	So	with	Def	2	we	have	an	alternative	criterion	of	phase

transitions	that	nicely	characterizes	phase	transitions	even	in	systems	that	do	not	have	thermodynamic	limits.	We

hasten	to	add	that	the	theory	is	not	exhausted	by	a	simple	definition.	Rather,	the	hope—	which	has	to	some	extent

been	realized—is	that	it	and	its	generalizations	can	predict	and	explain	both	continuous	phase	transitions	and	also

phase	transitions	in	systems	lacking	a	thermodynamic	limit.

Def	2	is	rather	striking	when	one	realizes	that	it	is	equivalent	to	a	region	of	negative	heat	capacities	appearing.	The

reader	familiar	with	the	van	Hove	theorem	may	be	alarmed,	for	that	theorem	forbids	back-bending	in	the

thermodynamic	limit.	Since	our	concerns	are	about	the	finite	case,	this	in	itself	is	not	troubling.	But	if	one	hopes	that

this	definition	goes	over	to	the	infinite	N	definition	in	the	thermody-namic	limit,	where	ensemble	equivalence	holds

for	many	systems,	this	might	be	a	problem:	the	canonical	ensemble	can	never	have	negative	heat	capacity,

whereas	the	microcanonical	one	can,	and	yet	they	are	equivalent	for	“normal”	short-range	systems	in	the

thermodynamic	limit.	Does	“ensemble	equivalence”	in	the	infinite	limit	squeeze	out	these	negative	heat	capacities?

No,	for	one	must	remember	that	ensemble	equivalence	holds,	where	it	does,	only	when	systems	are	not

undergoing	phase	transitions.	This	is	a	point	originally	made	by	Gibbs	(1902).	And	indeed,	ensemble	inequivalence

can	be	used	as	a	marker	of	phase	transitions.	What	is	happening	is	that	the	microcanonical	ensemble	has

structure	that	the	canonical	ensemble	cannot	see;	the	regions	of	back-bending	(or	convex	entropy,	or	negative

heat	capacity)	are	missed	by	the	canonical	ensemble.	Yet	since	the	canonical	ensemble	is	equivalent	to	the

microcanonical—if	at	all—only	when	no	phase	transition	obtains,	there	is	no	opportunity	for	conflict	with

“equivalence”	results.

This	remark	provides	a	clue	to	the	relation	between	Def	1	and	Def	2	and	a	way	of	thinking	about	the	first	as	a

subspecies	of	the	second.	When	there	is	back-bending	there	is	ensemble	inequivalence.	From	the	perspective	of

the	canonical	ensemble	for	an	infinite	system,	this	is	where	a	nonanalyticity	appears	in	the	thermodynamic	limit.	It

b
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can	“see”	the	phase	transition	in	that	case;	but	when	finite	it	is	blind	to	this	structure.	Def	2	can	then	be	seen	as

more	general,	since	it	triggers	the	nonanalyticity	seen	in	infinite	systems	and	captured	by	Def	1	but	also	applies	to

finite	systems.

Many	more	interesting	facts	have	recently	been	unearthed	about	the	relationships	among	back-bending,

nonconcave	entropies,	negative	heat	capacity,	ensemble	inequivalence,	phase	transitions,	and	nonextensivity	We

refer	the	reader	to	Touchette	and	Ellis	(2005)	for	discussion	and	references.	For	rigorous	connections	between	Def

1	and	Def	2,	see	Touchette	(2006).

3.1.2	Distribution	of	Zeros

This	approach	grows	directly	out	of	the	Yang-Lee	picture.	The	Yang-Lee	theorem	is	about	the	distribution	of	zeros

of	the	grand	canonical	ensemble's	partition	function	in	the	complex	plane.	A	critical	point	is	encountered	when	this

distribution	“pinches”	the	real	axis,	and	this	can	only	occur	when	the	number	of	zeros	is	infinite.	Fisher	and	later

Grossmann	then	provided	an	elaborate	classification	of	phase	transitions	in	terms	of	the	distribution	of	zeros	of	the

canonical	partition	function	in	the	complex	temperature	plane.	Interested	in	Bose-Einstein	condensation,	nuclear

fragmentation	and	other	“phase	transitions”	in	small	systems,	a	group	of	physicists	at	the	University	of	Oldenburg

sought	to	extend	this	approach	to	the	finite	case	(see	Borrmann,	Mülken,	and	Harting	2000).	For	our	purposes,	we

can	define	their	phase	transitions	as:

(Def	3)	A	phase	transition	occurs	when	the	zeros	of	the	canonical	partition	function	align	perpendicularly

to	the	real	temperature	axis	and	the	density	scales	with	the	number	of	particles.

The	distribution	of	zeros	of	a	partition	function	contains	a	lot	of	information.	The	idea	behind	this	approach	is	to

extract	three	parameters	(α,γ,τ )	from	the	partition	function	that	tell	us	about	this	distribution:	τ 	is	a	function	of	the

number	of	zeros	in	the	complex	temperature	plane,	and	it	is	positive	for	finite	systems;	γ	is	the	crossing	angle

between	the	real	axis	and	the	line	of	zeros;	and	α	is	determined	from	the	approximate	density	of	zeros	on	that	line.

What	happens	as	we	approach	a	phase	transition	is	that	the	distribution	of	zeros	in	the	complex	temperature	plane

“line	up”	and	gradually	gets	denser	and	straighter	as	N	increases.

Figure	5.2 	Distribution	of	zeros	in	the	complex	inverse	temperature	(β=	1/kT)	plane.

We	stress	that,	as	with	the	previous	group,	the	physicists	involved	do	not	offer	a	stray	definition	but	rather	a

comprehensive	theory	of	phase	transitions	in	small	systems.	In	particular,	the	Oldenburg	group	can	use	this	theory

to	not	only	predict	whether	there	is	a	phase	transition	but	also	to	identify	the	correct	order	of	the	transition.	Their

classification	excels	when	treating	Bose-Einstein	condensation,	as	it	reproduces	the	space	dimension	and	particle

number	dependence	of	the	transition	order.

Like	the	approach	using	Def	2,	the	present	approach	works	for	both	finite	and	infinite	systems.	For	finite	systems,

τ 	is	always	positive	and	we	look	for	cases	where	α	=	γ:	these	correspond	to	first-order	transitions	in	finite

systems.	More	complicated	relations	between	α	and	γ	correspond	to	higher-order	transitions.	For	infinite	systems,

phase	transitions	of	the	first-order	occur	when	α	=	γ	=	τ 	=	0	and	for	higher-order	when	α	〉	0.	So	the	scheme

includes	the	Def	1	case	as	a	subspecies.	One	can	then	view	Def	3—or	more	accurately,	the	whole	classification

scheme	associated	with	(α,γ,	τ )—as	a	wider,	more	general	definition	of	phase	transitions,	one	including	small

systems,	with	Def	1	as	a	special	case	when	the	thermodynamic	limit	is	legitimate.
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What	is	the	relationship	between	Def	2	and	Def	3?	It	turns	out	that	they	are	almost	equivalent.	Indeed,	if	one

ignores	a	class	of	systems	that	may	turn	out	to	be	unphysical,	they	are	demonstrably	equivalent;	see	Touchette

(2006). 	The	rich	schemes	of	which	these	definitions	form	a	part	may	not	be	equivalent,	but	on	the	question	of

what	counts	as	a	phase	transition	they	will	largely	agree.

As	a	result	of	the	work	on	finite-N	definitions—and	while	duly	recognizing	that	it	is	very	much	ongoing—it	seems	to

us	that	statistical	mechanics	is	hardly	at	a	loss	to	describe	phase	transitions	in	finite	systems.	The	situation	instead

seems	to	us	to	be	more	subtle.	No	definition	in	statistical	mechanics,	infinite	or	finite,	exactly	reproduces	the

extension	picked	out	by	thermodynamics	with	the	kind	“phase	transition.”	What	one	judges	the	best	definition	then

hangs	on	what	extension	one	wants	to	preserve.	If	focusing	on	thermodynamic	systems	possessing

thermodynamic	limits,	then	Def	1	is	fine.	Then	the	kind	“phase	transition”	is	conceptually	emergent	relative	to

finite-N	statistical	mechanics.	But	if	impressed	by	long-range	systems,	small	systems,	nonextensive	systems,	and

“solidlike-to-liquidlike”	mesoscopic	transitions,	then	one	of	the	finite-N	definitions	is	necessary.	Relative	to	these

definitions,	the	kind	“phase	transition”	is	not	conceptually	novel.	If	one	wants	a	comprehensive	definition,	for	finite

and	infinite,	then	the	schemes	described	provide	the	best	bet.	Probably	none	of	the	definitions	provide	necessary

and	sufficient	conditions	for	a	phase	transition	that	overlaps	perfectly	with	thermodynamic	phase	transitions.	That,

however,	is	okay,	for	thermodynamics	itself	does	not	neatly	characterize	all	the	ways	in	which	macrostates	can

change	in	an	“abrupt”	way.

In	any	case,	we	do	not	believe	that	conceptual	novelty	by	itself	poses	a	major	threat	to	reductionism.	After	all	even

a	(too)	strict	Nagelian	notion	of	reduction	can	accommodate	conceptual	novelty	(as	long	as	the	novel	higher-level

kind	is	expressible	as	a	finite	disjunction	of	lower-level	kinds).	Conceptual	novelty	is	only	a	problem	when	you	do

not	have	explanatory	reducibility	of	the	conceptually	novel	kind,	a	question	to	which	we	now	turn.

3.2	Explanatory	Irreducibility

Explanatory	irreducibility	occurs,	we	said,	when	the	explanation	of	a	higher-level	phenomenon	requires	a

conceptual	novelty,	yet	the	reducing	theory	does	not	have	the	resources	to	explain	why	the	conceptual	novelty	is

warranted. 	Where	phase	transitions	are	especially	interesting,	philosophically,	lies	in	the	fact	that,	at	first	glance,

they	seem	to	be	a	real-life	and	prominent	instance	of	explanatory	irreducibility.	To	arrive	at	this	claim,	let	us

suppose	that	the	finite-N	definitions	surveyed	above	are	theoretically	inadequate.	Assume	that	Def	1	is	employed

in	the	best	explanation	of	the	phenomena.	Then	we	have	already	seen	that	no	finite-N	statistical	mechanics	can

suffer	phase	transitions	so	understood.	If	the	“reducing	theory”	is	finite-N	statistical	mechanics,	then	we	potentially

have	a	case	of	explanatory	irreducibility.	But	should	the	reducing	theory	be	restricted	to	finite-N	theory?

One	quick	way	out	of	difficulty	would	be	to	include	the	thermodynamic	limit	as	part	of	the	reducing	theory.

However,	this	would	be	a	cheat.	The	thermodynamic	limit	is,	we	believe,	the	production	of	another

phenomenological	theory,	not	a	piece	of	the	reducing	theory.	The	ontology	of	the	classical	reducing	theory	is

supposed	to	be	finite-N	classical	mechanics.	Such	a	theory	has	surface	effects,	fluctuations,	and	more,	but	the

thermodynamic	limit	squashes	these	out.	More	importantly,	the	ontology	of	the	system	in	the	thermodynamic	limit	is

not	the	classical	mechanics	of	billiard	balls	and	the	like.	A	quick	and	interesting	way	to	see	this	point	is	to	note	that

the	thermodynamic	limit	is	mathematically	equivalent	to	the	continuum	limit	(Compagner	1989).	The	continuum	limit

is	one	wherein	the	size	and	number	of	particles	is	decreased	without	bound	in	a	finite-sized	volume.	When

thermodynamics	emerges	from	this	limit,	it	is	emerging	from	a	theory	describing	continuous	matter,	not	atomistic

matter.	New	light	is	shed	on	all	that	is	regained	in	the	thermodynamic	limit	if	we	see	it	as	regained	in	the	continuum

limit.	For	here	we	do	not	see	properties	emerging	from	an	atomic	microworld	behaving	thermodynamically,	but

rather	properties	emerging	from	a	continuum,	a	realm	well	“above”	the	atomic.	For	this	reason,	with	respect	to	the

reduction	of	thermodynamics	to	statistical	mechanics,	we	do	not	see	proofs	that	thermodynamic	properties	emerge

in	the	thermody-namic	limit	as	cases	whereby	thermodynamic	properties	are	reduced	to	mechanical	properties.

If	this	is	right,	then	we	have	a	potential	case	of	explanatory	irreducibility.	The	best	explanation	of	the	phenomenon

of	phase	transitions	contains	an	idealization	whose	efficacy	cannot	be	explained	from	the	perspective	of	finite-N

theory.	So	are	phase	transitions	actually	explanatorily	irreducible?	The	answer	hangs	on	whether	de-idealization

can	be	achieved	within	finite-N	statistical	mechanics.	We	believe	that	it	can	be.	We	have	already	hinted	at	one

possibility.	If	one	could	show	that	one	or	more	of	the	finite-N	definitions	approximate	in	a	controlled	way	Def	1,	then

we	could	view	Def	1	as	“really”	talking	about	one	of	the	other	definitions.	Indeed,	this	seems	very	much	a	live
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possibility	with	either	Def	2	or	Def	3	above.	However,	suppose	we	believe	that	this	is	not	possible.	Is	there	any

other	way	of	de-idealizing	the	standard	treatment	of	phase	transitions?	We	believe	that	there	is,	and	both

Butterfield	(2011)	and	Kadanoff	(2009)	point	toward	the	right	diagnosis.

Before	getting	to	that,	however,	notice	that	the	actual	practice	of	the	science	more	or	less	guarantees	that	some

finite-N	approximation	must	be	available.	In	recent	years	there	has	been	an	efflorescence	of	computational	models

of	statistical	mechanical	phenomena	(see	Krauth	2006).	Since	we	cannot	simulate	an	infinite	system,	these	models

give	an	inkling	of	how	we	might	approximate	the	divergences	associated	with	critical	behavior	in	a	finite	system.

Consider,	for	instance,	the	Monte	Carlo	implementation	of	the	Ising	model	(see,	for	instance,	Wolff	(1989)).	The

Monte	Carlo	method	involves	picking	some	probabilistic	algorithm	for	propagating	fluctuations	in	the	lattice

configuration	of	an	Ising	system	as	time	evolves.	Each	run	of	the	simulation	is	a	random	walk	through	the	space	of

configurations,	and	we	study	the	statistical	properties	of	ensembles	of	these	walks.

It	might	be	argued	that	the	system	size	in	these	simulations	is	effectively	infinite,	since	the	lattice	is	usually

implemented	with	periodic	boundary	conditions.	However,	this	periodicity	should	be	interpreted	merely	as	a

computational	tool,	not	as	a	simulation	of	infinite	system	size.	The	algorithm	is	supposed	to	study	the	manner	in

which	fluctuations	propagate	through	the	lattice,	but	the	model	will	only	work	if	the	correlation	length	is	less	than

the	periodicity	of	the	system.	If	fluctuations	propagate	over	scales	larger	than	the	periodicity,	we	will	have	a

conflict	between	the	propagation	of	fluctuations	and	the	constraints	set	by	the	periodicity	of	boundary	conditions.

So	the	periodic	boundary	conditions	should	be	interpreted	as	setting	an	effective	system	size.	The	model	is	only

useful	as	long	as	the	correlation	length	remains	below	this	characteristic	length	scale.	Unfortunately,	the	periodic

boundary	conditions	also	mean	that	the	model	is	not	accurate	at	the	critical	point,	only	close	to	it.	As	the

correlation	length	approaches	system	size	in	a	real	system,	surface	effects	become	relevant,	and	the	simulation

neglects	these	effects.

Nonetheless,	the	Monte	Carlo	method	does	allow	us	to	see	how	Ising	systems	approach	critical	behavior	near	the

critical	point.	For	instance,	models	exhibit	the	increase	of	correlation	length	as	the	critical	point	is	approached	and

the	associated	slow-down	of	equilibriation	(due	to	the	increased	length	over	which	fluctuations	propagate).	As	we

construct	larger	and	larger	systems,	the	model	is	precise	closer	and	closer	to	the	critical	point,	and	we	can	see	the

correlation	length	get	larger.	We	can	also	model	the	nonequilibrium	phenomenon	of	avalanches,	where	the	order

parameter	of	the	system	changes	in	a	series	of	sharp	jumps	as	the	external	parameter	in	the	Hamiltonian	is	varied.

As	an	example,	the	magnetization	of	a	magnetic	material	exhibits	avalanches	as	the	external	field	is	tuned.	The

avalanches	are	due	to	the	way	in	which	fluctuations	of	clusters	of	spins	trigger	further	fluctuations.	At	the	critical

point,	we	get	avalanches	of	all	sizes.	Again,	the	approach	to	this	behavior	can	be	studied	by	examining	how	the

distribution	of	avalanches	changes	as	the	system	approaches	the	critical	point.	These	are	just	some	examples	of

how	finite	models	can	be	constructed	to	examine	the	behavior	of	a	system	arbitrarily	close	to	the	critical	point.

These	models	fail	sufficiently	close	to	criticality	because	they	do	not	adequately	deal	with	boundary	effects.

However,	they	do	give	an	indication	of	how	the	behavior	of	large	finite	systems	can	be	seen	as	smoothly

approximating	the	behavior	of	infinite	systems.

We	now	turn	to	a	more	explicit	attempt	to	understand	the	idealization.	Butter-field	(2011,	§	3.3	and	§	7)	thinks	the

treatment	of	phase	transitions	does	not	occasion	any	great	mystery.	We	agree	and	reproduce	his	mathematical

analogy	(with	slight	modifications)	to	illustrate	the	point.	Consider	a	sequence	of	real	functions	gN,	where	N	ranges

over	the	natural	numbers.	For	each	value	of	N,	the	function	gN	(x)	is	continuous.	It	is	equal	to	−1	when	x	is	less

than	or	equal	to	−1/N,	increases	linearly	with	slope	N	when	x	is	between	−1/N	and	1/N,	and	then	stays	at	1	when

x	is	greater	than	or	equal	to	1/N.	The	slope	of	the	segment	connecting	the	two	constant	segments	of	the	function

gets	steeper	and	steeper	as	N	increases.

While	every	member	of	this	sequence	of	functions	is	continuous,	the	limit	of	the	sequence	g (x)	is	discontinuous	at

x	=	0.	Now	consider	another	sequence	of	real	functions	of	x,	f .	These	are	two-valued	functions,	defined	as

follows:

Given	these	definitions,	fN(x)	is	the	constant	zero	function	for	all	N.	If	we	just	look	at	the	sequence	of	functions,	we
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would	expect	the	limit	of	the	sequence	fN	as	N	→	∞	to	also	be	constant.	However,	if	we	construct	f 	(x)	from	g 	(x)

using	the	above	definition,	we	will	not	get	a	constant	function.	The	function	will	be	discontinuous;	it	will	take	on	the

value	1	at	x	=	0.	If	one	focuses	only	on	fN	without	paying	attention	to	how	it	is	generated	from	gN,	the	behavior	in

the	limit	will	seem	mysterious	and	inexplicable	given	the	behavior	at	finite	N.

Imagine	that	we	represent	a	physical	property	in	a	model	in	terms	of	fN(x)	taking	on	the	value	1,	where	N	is	a

measure	of	the	size	of	the	physical	system.	This	property	can	only	be	exemplified	in	the	infinite-N	limit,	of	course.

And	if	we	restricted	ourselves	to	considering	fN	when	trying	to	explain	the	property,	we	would	be	at	a	loss.	No

matter	how	big	N	gets,	as	long	as	it	is	finite	there	is	no	notion	of	being	nearer	or	further	away	from	the	property

obtaining.	We	might	conclude	that	the	property	is	emergent	in	the	infinite	limit,	since	we	cannot	“de-idealize”	as	we

did	in	the	case	of	extensivity	and	show	how	a	finite	system	approximates	this	property.	However,	this	is	only

because	we	are	not	paying	attention	to	the	gN(x).	Realizing	the	relationship	between	fN	and	gN	allows	us	to	account

for	the	behavior	of	fN	in	the	infinite	limit	from	a	finite	system	perspective,	since	there	is	a	clear	sense	in	which	the

functions	gN	approach	discontinuity	as	N	approaches	infinity.

We	might	put	the	point	as	follows.	Suppose	we	have	a	theory	of	some	physical	property	that	utilizes	the	predicates

g,	N,	and	x.	Suppose	further	that	we	are	particularly	interested	in	the	rapid	increase	in	gN(x)	around	x	=	0	when	N

is	large.	Rather	than	analyze	gN	(x)	for	particular	finite	values	of	N,	it	might	make	sense	from	a	computational

perspective	to	work	with	the	infinite	idealization	g (x),	where	the	relevant	behavior	is	stark	and	localized	at	x	=	0.

We	may	introduce	a	new	“kind”	represented	by	the	predicate	f	that	picks	out	the	phenomenon	of	interest	in	the

infinite	limit.	This	kind	is	conceptually	novel	to	the	�g,	N,	x�	framework.	Indeed,	one	can	imagine	a	whole	theory

written	in	terms	off,	without	reference	to	g.	Using	such	a	theory	it	could	be	difficult	to	see	how	f	is	approximated	by

some	function	of	finite-N.	Because	f	is	two-valued,	the	property	it	represents	will	appear	to	just	pop	into	existence

in	the	infinite	limit	without	being	approximated	in	any	way	by	large	finite	systems.	Restricted	to	f	(and	hence	g (x)),

one	would	not	have	the	resources	present	to	explain	how	f	emerges	from	the	shape	of	g	when	N	is	finite.

This	is	precisely	what	happens	in	phase	transitions.	As	Butterfield	shows,	the	example	of	f	and	g	translates	nicely

into	the	treatment	of	phase	transitions.	The	magnetization	in	an	Ising	model	behaves	like	gN(x),	where	N	is	the

number	of	particles	and	x	is	the	applied	field.	For	finite	systems,	the	transition	of	the	system	between	the	two

phases	of	magnetization	occurs	continuously	as	the	applied	field	goes	from	negative	to	positive.	In	the	infinite

case,	the	transition	is	discontinuous.	The	sequence	of	functions	fN	isolate	one	aspect	of	the	behavior	of	the

functions	gN—	whether	or	not	they	are	continuous.	If	we	just	focus	on	this	property,	it	might	seem	like	there	is

entirely	novel	behavior	in	the	infinite	particle	case.	The	shape	of	f (x)	around	x	=	0	is	not	in	any	sense

approximated	or	approached	by	fN	as	N	gets	large.	If	it	is	the	case	that	large	finite	systems	can	be	successfully

modeled	as	infinite	systems,	this	might	seem	to	be	a	sign	of	explanatory	irreducibility.	The	success	of	the	infinite

particle	idealization	cannot	be	explained	because	the	infinite	particle	function	is	not	the	limit	of	the	finite	particle

function	sequence	fN.	The	illusion	of	explanatory	irreducibility	is	dispelled	when	we	realize	that	any	explanation

involving	f 	can	be	rephrased	in	terms	of	g ,	and	the	latter	function	does	not	display	inexplicably	novel	behavior.	It

is	in	fact	the	limit	of	the	finite	particle	functions	gN.	As	N	increases,	gN	approaches	g 	in	a	well-defined	sense.	At	a

sufficiently	large	but	finite	system	size	N ,	the	resolution	of	our	measuring	instruments	will	not	be	fine-grained

enough	to	distinguish	between	gN (x)	and	g (x).	We	have	an	explanation,	much	like	the	one	we	have	for

extensivity,	of	the	efficacy	of	the	infinite	idealization.

Recognizing	that	the	predicate	f	only	picks	out	part	of	the	information	conveyed	by	the	predicate	g	dissolves	the

mystery.	The	new	predicate	is	useful	when	we	are	working	with	the	idealization,	but	it	makes	de-idealization	a	more

involved	process.	To	see	the	connection	between	a	phase	transition	defined	via	Def	1	and	real	finite	systems,	one

must	first	“undo”	the	conceptual	innovation	and	write	the	theory	as	a	limit	of	nascent	functions.	At	that	point	one

can	then	see	that	the	idealization	is	an	innocent	simplification	and	extrapolation	of	what	happens	to	certain

physical	curves	when	N	grows	large.

3.3	Ontological	Irreducibility

Ontological	irreducibility	involves	a	very	strong	failure	of	reduction,	and	if	any	phenomenon	deserves	to	be	called

emergent,	it	is	one	whose	description	is	ontolog-ically	irreducible	to	any	theory	of	its	parts.	Batterman	argues	that

phase	transitions	are	emergent	in	this	sense	(Batterman	2005).	It	is	not	just	that	we	do	not	know	of	an	adequate

statistical	mechanical	account	of	them,	we	cannot	construct	such	an	account.	Phase	transitions,	according	to	this
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view,	are	cases	of	genuine	physical	discontinuities.	The	discontinuity	is	there	in	nature	itself.	The	thermodynamic

representation	of	these	phenomena	as	mathematical	singularities	is	quite	natural	on	this	view.	It	is	hard	to	see	how

else	to	best	represent	them.	However,	canonical	statistical	mechanics	does	not	allow	for	mathematical	singularities

in	thermodynamic	functions	of	finite	systems,	so	it	does	not	have	the	resources	to	adequately	represent	these

physical	discontinuities.	If	the	density	of	a	finite	quantity	of	water	does	as	a	matter	fact	change	discontinuously	at	a

phase	transition,	then	it	seems	that	statistical	mechanics	is	incapable	of	describing	this	phenomenon,	so	the

thermodynamics	of	phase	transitions	is	genuinely	ontologically	irreducible.

Why	think	phase	transitions	are	physically	discontinuous?	Batterman	appeals	to	the	qualitative	distinction	between

the	phases	of	fluids	and	magnets.	Yet	describing	the	distinction	between	the	phases	as	“qualitative”	is	potentially

misleading.	It	is	true	that	the	different	phases	of	certain	systems	appear	macroscopically	distinct	to	us.	A	liquid

certainly	seems	very	different	from	a	gas.	However,	from	a	thermodynamic	perspective	the	difference	is

quantitative.	Phases	are	distinguished	based	on	the	magnitudes	of	certain	thermodynamic	parameters.	The	mere

existence	of	distinct	states	of	the	system	exhibiting	these	different	magnitudes	does	not	suggest	that	there	is	any

discontinuity	in	the	transition	between	the	systems.	This	is	a	point	about	the	mathematical	representation,	but	the

lesson	extends	to	the	physical	phenomenon.	While	it	is	true	that	the	phases	of	a	system	are	macroscopically

distinct,	this	is	not	sufficient	to	establish	that	the	physical	transition	from	one	of	these	phases	to	the	other	as	gross

constraints	are	altered	involves	a	physical	discontinuity.

In	order	to	see	whether	there	really	is	a	discontinuity	that	is	appropriately	modeled	as	a	singularity	we	need	to

understand	the	dynamics	of	the	change	of	phase.	So	we	take	a	closer	look	at	what	happens	at	a	first-order	phase

transition.	Consider	the	standard	representation	of	an	isotherm	on	the	liquid-gas	P-V	diagram	at	a	phase	transition

(figure	5.3).

Figure	5.3 	P-	V	diagram	for	a	liquid-gas	system	at	a	phase	transition.

The	two	black	dots	are	coexistence	points.	At	these	points	the	pressure	on	the	system	is	the	same,	but	the	system

separates	into	two	distinct	phases:	low-volume	liquid	and	high-volume	gas.	The	two	coexistence	points	are

connected	by	a	horizontal	tie-line	or	Maxwell	plateau.	On	this	plateau,	the	system	exists	as	a	two-phase	mixture.	It

is	here	that	the	dynamics	of	interest	takes	place.	However,	the	representation	above	is	too	coarse-grained	to

provide	a	full	description	of	the	behavior	of	the	system	at	transition.	This	representation	certainly	involves	a

mathematical	singularity:	as	the	pressure	is	reduced,	the	volume	of	the	system	changes	discontin-uously.	But	a

closer	look	at	how	the	transition	takes	place	demonstrates	that	this	is	just	an	artifact	of	the	representation,	and	not

an	accurate	picture	of	what	is	going	on	at	the	transition.	The	P-V	diagram	ignores	fluctuations,	but	fluctuations	are

crucial	to	the	transition	between	phases.	The	process	by	which	this	takes	place	is	nucleation.	When	we	increase

the	pressure	of	a	gas	above	the	coexistence	point	it	does	not	instantaneously	switch	to	a	liquid	phase.	It	continues

in	its	gaseous	phase,	but	this	supersaturated	vapor	is	meta-stable.	Thermal	fluctuations	cause	droplets	of	liquid	to

nucleate	within	the	gaseous	phase.	In	this	regime,	the	liquid	phase	is	energetically	favored,	and	this	encourages

the	expansion	of	the	droplet.	However,	surface	effects	at	the	gas–liquid	interface	impede	the	expansion.	When	the

droplet	is	small,	surface	effects	predominate,	preventing	the	liquid	phase	from	spreading,	but	if	there	is	a

fluctuation	large	enough	to	push	the	droplet	over	a	critical	radius,	the	free	energy	advantage	dominates	and	the

liquid	phase	can	spread	through	the	entire	system.	A	full	account	of	the	gas–liquid	transition	will	involve	a

description	of	the	process	of	nucleation,	a	nonequilibrium	phenomenon	that	is	not	represented	on	the	equilibrium

P-V	diagram	in	figure	5.3.
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Perhaps	the	nucleation	of	droplets	from	zero	radius	could	be	seen	as	an	example	of	a	physical	discontinuity.

However,	an	analysis	of	this	process	is	not	beyond	the	reach	of	finite	particle	statistical	mechanics.	We	can	study

the	nucleation	of	a	new	phase	using	the	Ising	model.	As	the	external	field	crosses	zero,	simulations	of	the	model

show	that	initially	local	clusters	of	spins	flip.	Some	of	these	clusters	are	too	small,	so	they	shrink	back	to	zero,	but

once	there	is	a	large	enough	cluster—a	critical	droplet—the	flipping	spreads	across	the	entire	system	and	the	new

phase	takes	over.	All	of	this	is	observable	in	a	simple	finite	particle	Ising	system,	so	the	phenomenon	of	nucleation

can	be	described	by	statistical	mechanics	without	having	to	invoke	the	thermodynamic	limit.	If	it	is	the	case	that

physical	discontinuities	cannot	be	accurately	described	by	statistical	mechanics,	then	we	have	good	reason	for

believing	there	are	no	such	discontinuities	in	the	process	of	phase	transition.

Even	if	we	grant	that	phase	transitions	involve	a	physical	discontinuity	and	can	only	be	accurately	represented	by

a	mathematical	singularity,	the	ontological	irre-ducibility	of	the	phenomenon	does	not	follow.	Very	recently	it	has

been	shown	that	the	microcanonical	entropy,	unlike	the	canonical	free	energy,	can	be	nonanalytic	for	finite

systems.	And	indeed,	a	research	program	has	sprung	up	based	on	this	discovery	that	tries	to	link	singularities	of

the	microcanonical	entropy	to	thermodynamic	phase	transitions	(Franzosi,	Pettini,	and	Spinelli	2000,	Kastner	2008).

That	program	demonstrates	that	nonanalyticities	in	the	entropy	are	associated	with	a	change	in	the	topology	of

configuration	space.	Consider	the	subset	of	configuration	space	M 	that	contains	all	points	for	which	the	potential

energy	per	particle	is	lower	than	v.	As	v	is	varied,	this	subset	changes,	and	at	some	critical	values	of	v	the

topological	properties	of	the	subset	change.	This	topology	change	is	marked	by	a	change	in	the	Euler

characteristic.	For	finite	systems,	there	is	a	nonanalyticity	in	the	entropy	wherever	there	is	a	topology	change.	For

infinite	systems	there	is	a	continuum	of	points	at	which	the	topology	changes,	so	a	straightforward	identification	of

phase	transitions	with	topology	change	is	inappropriate. 	Nevertheless,	it	is	widely	believed	that	there	is	some

connection	between	these	finite	nonanalyticities	and	thermodynamic	phase	transitions.

This	is	a	fledgling	research	program	and	there	are	still	a	number	of	open	questions.	It	is	unclear	what	topological

criteria	will	be	necessary	and	sufficient	to	define	phase	transitions,	if	any	such	criteria	can	be	found.	What	is

important	for	our	purposes	is	that	it	is	clear	that	the	microcanonical	ensemble	does	exhibit	singularities	even	in	the

finite	particle	case	and	that	there	is	a	plausible	research	program	attempting	to	understand	phase	transitions	in

terms	of	these	singularities.	As	such,	it	is	certainly	premature	to	declare	that	phase	transitions	are	ontologically

irreducible	even	if	they	involve	genuine	physical	discontinuities.	Statistical	mechanics	might	well	have	the

resources	to	adequately	represent	these	discontinuities	without	having	to	advert	to	the	thermodynamic	limit.

4.	The	Infinite	Idealization	in	the	Renormalization	Group

We	have	argued	that	there	is	good	reason	to	think	the	use	of	the	infinite	limit	in	the	statistical	mechanical

description	of	phase	transitions	does	not	show	that	the	phenomenon	is	either	ontologically	or	explanatorily

irreducible.	Here	we	examine	whether	similar	claims	can	be	made	about	the	way	the	infinite	idealization	is	used	in

renormalization	group	theory.	While	this	theory	is	usually	included	under	the	broad	rubric	of	statistical	mechanics,

there	are	significant	differences	between	renormalization	group	methods	and	the	methods	characteristic	of

statistical	mechanics.	Statistical	mechanics	allows	us	to	calculate	the	statistical	properties	of	a	system	by

analyzing	an	ensemble	of	similar	systems.	Renormalization	group	methods	enter	when	correlations	within	a	system

extend	over	scales	long	enough	to	make	straightforward	ensemble	methods	impractical	(see	Kadanoff	(2010a)	for

more	on	this	distinction).	The	properties	of	the	system	are	calculated	not	from	a	single	ensemble	but	from	the	way

in	which	the	ensemble	changes	upon	rescaling.	In	statistical	mechanics,	the	infinite	idealization	is	important	for	the

effect	it	has	on	a	single	ensemble	(allowing	nonanalyticities,	for	instance).	In	renormalization	group	theory,	the

infinite	idealization	is	important	because	it	allows	unlimited	rescaling	as	we	move	from	ensemble	to	ensemble.	The

apparent	difference	in	the	use	of	the	idealization	suggests	the	possibility	of	significant	philosophical	distinctions.	It

will	not	do	to	blithely	extend	our	conclusions	about	statistical	mechanics	to	cover	renormalization	group	theory.

We	distinguish	two	different	types	of	explanation	that	utilize	the	renormalization	group	framework.	The	first	is	an

explanation	of	the	critical	behavior	of	particular	systems,	and	the	second	is	the	universal	behavior	of	classes	of

systems.	The	first	type	of	explanation	does	not	raise	any	fundamentally	new	issues	that	we	did	not	already

consider	in	our	discussion	of	the	explanatory	reducibility	of	phase	transitions	in	statistical	mechanics.	The	second

type	of	explanation	does	raise	significant	new	issues,	since	we	move	from	the	examination	of	phenomena	in

particular	systems	to	phenomena	characterizing	classes	of	systems.	Batterman	(2011)	argues	that	the

v

9



Turn and Face The Strange … Ch-Ch-Changes

Page 19 of 24

renormalization	group	explanation	of	universality	is	a	case	of	explanatory	irreducibility.	While	we	might	be	able	to

tell	a	complex	microphysical	story	that	explains	why	a	particular	finite	system	exhibits	certain	critical	behavior	(the

first	type	of	explanation),	we	cannot	account	for	the	fact	that	many	microscopically	distinct	systems	exhibit

identical	critical	behavior	(the	second	type	of	explanation)	without	using	the	infinite	idealization.

We	begin	with	a	brief	discussion	the	first	type	of	explanation:	the	renormalization	group	applied	to	the	critical

behavior	of	individual	systems.	We	know	from	theory	and	experiment	that	there	are	large-scale	correlations	near

the	critical	point	and	that	mean	field	theory	does	not	work	in	these	conditions.	We	need	a	method	that	can	handle

systems	with	long	correlation	lengths,	and	this	is	exactly	the	purpose	that	the	renormalization	group	method

serves.	We	idealize	the	correlation	length	of	the	system	as	infinite	so	that	it	flows	to	a	fixed	point	under	rescaling

and	then	calculate	its	critical	exponent	by	examining	the	behavior	of	the	trajectory	near	the	fixed	point.

This	raises	the	question	of	why	a	system	with	a	large	correlation	length	can	be	successfully	represented	as	a

system	with	an	infinite	correlation	length.	If	we	have	no	explanation	of	the	success	of	this	idealization,	we	have	a

case	of	explanatory	irreducibility.	However,	when	we	are	focusing	on	the	behavior	of	a	particular	system,	any

irreducibility	in	the	renormalization	group	theory	is	inherited	from	orthodox	statistical	mechanics.	The	justification	of

the	infinite	correlation	length	idealization	will	coincide	with	the	justification	for	the	infinite	system	size	idealization.

Why	does	the	renormalization	group	method	need	the	infinite	limit?	Because	it	relies	on	the	divergence	of	the

correlation	length	at	the	critical	point,	which	is	impossible	in	a	finite	system.	Why	does	the	correlation	length

diverge?	Because	it	is	related	to	the	susceptibility,	which	is	a	second	derivative	of	the	free	energy	and	diverges.

Why	does	the	susceptibility	diverge?	Because	there	is	a	nonanalyticity	in	the	free	energy.	Explaining	why	(or

whether)	this	nonanalyticity	exists	takes	us	back	to	the	statistical	mechanical	definition	of	phase	transitions.	If

statistical	mechanics	can	explain	phase	transitions	reductively,	then	the	renormalization	group	does	not	pose	an

additional	philosophical	problem	when	we	focus	on	its	application	to	particular	systems.	It	is	true	that	the	system

must	be	idealized	in	order	to	employ	renormalization	group	theory,	but	that	idealization	can	be	justified	outside

renormalization	group	theory.

The	more	interesting	case	is	the	second	type	of	explanation,	the	explanation	of	universality.	Without	the

renormalization	group	method,	we	might	examine	the	behavior	of	individual	finite	system	and	discover	that	a

number	of	such	systems,	though	microscopically	distinct,	exhibit	strikingly	similar	macroscopic	behavior	near

criticality.	However,	this	would	not	tell	us	why	we	should	expect	this	macroscopic	similarity,	and	so	it	is	not	really	a

satisfactory	explanation	of	universality.	The	renormalization	group	method	givesusagenuine	explanation:	when	the

correlation	length	diverges,	there	is	no	characteristic	length	scale.	If	the	relevant	parameters	for	the	system

vanish,	as	they	do	at	criticality,	the	system	will	flow	to	a	fixed	point	under	repeated	rescaling.	Fixed	points	can

function	as	attractors,	leading	to	similar	critical	behavior	for	a	number	of	different	systems.

If	the	system	size	is	finite,	the	system	will	not	flow	to	a	fixed	point.	We	might	be	able	to	show	that	a	number	of

distinct	large	finite	systems	flow	to	points	in	system	space	that	are	very	close	to	each	other,	but	once	again	all	that

we	have	done	is	revealed	the	universality	of	critical	(or	near-critical)	behavior.	We	have	not	explained	it.	There	is

a	generic	reason	to	expect	distinct	infinite	systems	to	flow	to	stable	fixed	points,	but	without	mentioning	fixed	points

there	does	not	seem	to	be	a	generic	reason	to	expect	distinct	finite	systems	to	flow	to	points	that	are	near	each

other.	So	it	seems	that	fixed	points	play	an	indispensable	role	in	the	explanation	of	universal	behavior.	We	cannot

“de-idealize”	and	remove	reference	to	fixed	points	in	the	explanation,	the	way	we	can	for	nonanalyticities	in

particular	systems.	Think	back	to	Butterfield's	example	described	in	section	3.2.	In	that	example,	the	apparent

explanatory	irreducibility	of	the	behavior	of	f 	was	resisted	by	rephrasing	our	explanations	in	terms	of	g ,	a

function	whose	behavior	in	the	limit	is	not	novel.	In	the	case	of	the	renormalization	group,	it	seems	that	this	move	is

unavailable	to	us.	Fixed	points	are	a	novel	feature	that	only	appear	in	the	infinite	limit.	There	does	not	seem	to	be	a

clear	sense	in	which	the	renormalization	flow	of	finite	systems	can	approximate	a	fixed	point.	A	point	is	either	a

fixed	point	for	the	flow	or	it	is	not;	it	cannot	be	“almost”	a	fixed	point.	And	unlike	Butterfield's	example,	there	does

not	seem	to	be	a	way	of	rephrasing	the	explanation	of	universality	in	terms	that	are	approximated	by	large	finite

systems.

So	there	is	a	strong	prima	facie	case	that	universality	is	explanatorily	irreducible.	However,	we	do	not	believe	that

the	case	stands	up	to	scrutiny.	To	see	how	it	fails,	we	begin	by	showing	that	we	can	explain	why	finite	systems

exhibit	universal	behavior	near	criticality.	However,	this	explanation	does	require	the	full	resources	of	the

renormalization	group	method,	including	fixed	points.	So	it	is	not	an	explanation	of	the	sort	that	we	were

∞ ∞
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contemplating	above,	one	that	does	away	with	reference	to	fixed	points.	We	will	argue	that	this	should	not	actually

trouble	the	reductionist,	but	first	we	present	the	explanation.

Consider	an	Ising	system	extending	over	a	finite	length.	When	the	system	is	rescaled,	the	separation	between	the

nodes	on	the	lattice	increases.	Since	we	are	keeping	the	system	size	fixed,	this	means	the	number	of	nodes	will

decrease.	So	unlike	the	infinite	system	case,	for	a	finite	system	the	number	of	nodes	is	a	parameter	that	is	affected

by	rescaling.	If	the	number	of	nodes	is	N,	we	can	now	think	of	1/N	as	a	relevant	parameter	(as	defined	in	section

1.3).	When	we	restrict	ourselves	to	the	infinite	case,	we	are	considering	a	particular	hypersurface	of	this	new

parameter	space	where	1/N	is	set	to	0.	However,	since	1/N	is	a	relevant	parameter,	perturbing	the	system	off	this

hypersurface	(i.e.,	switching	from	the	infinite	to	a	finite	system)	will	take	the	system	away	from	the	critical	fixed

point.	This	should	be	cause	for	concern.	It	seems	there	is	no	hope	for	an	explanatory	reduction.	If	even	a	slight

perturbation	off	the	1/N	=	0	hypersurface	changes	the	critical	behavior,	how	can	we	think	of	finite	systems	as

approximating	the	behavior	of	infinite	systems?	As	Kadanoff	says,	“if	the	block	transformation	ever	reaches	out

and	sees	no	more	couplings	in	the	usual	approximation	schemes	…	that	will	signal	the	system	that	a	weak	coupling

situation	has	been	encountered	and	will	cascade	back	to	produce	a	weak	coupling	phase	[a	trivial	fixed	point	with

K	=	0]”	(Kadanoff	2010b,	47).

However,	all	is	not	lost.	The	difference	between	the	behavior	of	finite	and	infinite	systems	depends	on	the

correlation	length.	When	the	correlation	length	is	very	small	relative	to	the	system	size,	the	finite	system	behaves

much	like	the	infinite	system.	The	values	of	thermodynamic	observables	will	not	differ	substantially	from	their

values	for	an	infinite	system.	The	behavior	of	the	finite	system	will	only	exhibit	a	qualitative	distinction	when	the

correlation	length	becomes	comparable	to	the	system	size.	This	phenomenon	is	known	as	finite	size	crossover

(see	Cardy	(1996),	ch.	4)	for	a	full	mathematical	treatment).	It	is	a	manifestation	of	the	fact	that	the	behavior	of	the

system	is	sensitive	to	the	large-scale	geometry	of	the	system	only	when	the	correlation	length	is	large	enough	to

be	comparable	to	the	system	size.	The	crossover	is	controlled	by	the	reduced	temperature.	As	long	as	this

parameter	is	above	a	certain	value	(given	by	an	inverse	power	of	the	system	size),	the	correlation	length	will	be

small	enough	that	no	distinction	between	finite	and	infinite	systems	will	be	measurable.	It	is	only	below	the

crossover	temperature	that	finite-size	effects	become	significant	and	the	system	flows	away	from	the	critical	point.

For	a	large	system,	the	crossover	temperature	will	be	very	small,	and	its	difference	from	the	critical	temperature	t	=

0	may	be	within	experimental	error.	So	for	a	sufficiently	large	system,	it	is	plausible	that	the	infinite	size

approximation	will	work	all	the	way	to	criticality.	Renormalization	group	theory	itself	predicts	this.	A	similar	point	is

made	in	Butterfield	(2011).

Crossover	theory	also	provides	tools	for	estimating	the	changes	to	critical	behavior	that	come	from	changing	the

geometry	of	the	system	by	limiting	its	size.	Adding	system	size	as	a	parameter	gives	us	a	new	scaling	function	for

the	susceptibility,	a	description	of	how	the	susceptibility	changes	with	changes	in	relevant	parameters.	As

described	above,	this	scaling	function	gives	a	behavior	for	the	susceptibility	similar	to	the	infinite	limit	as	long	as

the	ratio	of	correlation	length	to	system	size	is	low.	It	also	allows	us	to	predict	the	behavior	of	the	susceptibility

when	this	ratio	becomes	close	to	one.	The	susceptibility	of	a	finite	system	will	not	diverge;	it	will	have	a	smooth

peak.	The	height	of	the	peak	of	susceptibility	scales	as	a	positive	power	of	size	of	the	system.	So	for	a	large

system,	the	susceptibility	will	be	large	but	not	infinite.	In	addition,	the	location	of	the	peak	shifts,	and	this	shift

scales	as	an	inverse	power	of	the	size.	This	means	that	for	a	large	system	the	difference	between	the	critical

temperature	(the	temperature	at	the	critical	fixed	point	of	the	infinite	system)	and	the	temperature	at	which	it	attains

maximum	susceptibility	is	very	small.	So	for	a	macroscopic	system,	crossover	theory	explains	why	it	is	a	good

approximation	to	treat	the	susceptibility	as	diverging	at	the	critical	point.

The	point	of	this	discussion	is	that	we	can	tell	an	explanatory	story	about	the	circumstances	under	which	particular

large	finite	systems	can	be	treated	like	infinite	systems.	If	the	crossover	temperature	is	sufficiently	small,	then

limitations	of	our	measurement	procedures	might	make	it	difficult	or	even	impossible	to	distinguish	that	the	system

does	not	flow	to	the	critical	point.	However,	this	explanatory	story	does	make	reference	to	fixed	points	in	system

space.	So	the	worry	is	that	it	is	not	a	fully	reductive	account.	We	may	have	explained	why	individual	finite	systems

can	be	successfully	idealized	as	flowing	to	the	critical	fixed	point,	but	have	we	accounted	for	the	existence	of	the

critical	fixed	point?	We	are	taking	for	granted	in	our	explanation	the	topological	structure	of	system	space,	a

topological	structure	that	is	to	a	large	extent	determined	by	the	behavior	of	infinite	systems.

This	is	true,	but	does	it	lead	to	explanatory	irreducibility?	Is	it	illicit	to	include	the	topological	structure	of	system
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space	among	the	explanatory	resources	of	our	lower-level	theory?	It	would	be	if	this	structure	involved	an

idealization	whose	efficacy	could	not	be	accounted	for	within	the	lower-level	theory.	Isn't	an	irreducible	infinite

idealization	involved	in	the	postulation	of	a	renormalization	flow	with	fixed	points?	It	is	not.	As	we	have	seen,	the

renormalization	flow	can	be	defined	for	all	systems,	finite	and	infinite	alike,	since	1/N	can	be	introduced	as	a

relevant	parameter.	Fixed	points	will	appear	on	the	hypersurface	where	1/N	=	0.	There	is	no	infinite	idealization

involved	here.	Of	course,	we	are	talking	about	infinite	systems	and	how	they	behave	under	the	renormalization

flow,	but	this	should	not	be	problematic	from	a	reductive	point	of	view.	The	problem	would	arise	if	we	model	finite

systems	as	infinite	systems	without	explanation.	But	at	this	stage,	when	we	are	setting	up	the	space	and

determining	its	topological	characteristics,	we	are	not	modeling	particular	systems.	Insofar	as	finite	systems	are

represented	in	our	description	of	the	space,	they	are	represented	as	finite	systems,	and	infinite	systems	are

represented	as	infinite	systems.

So	the	topological	structure	of	the	space	can	be	described	without	problematic	infinite	idealization.	When	we	try	to

explain	the	universality	of	critical	behavior	in	finite	systems,	we	do	have	to	employ	the	infinite	idealization,	but	as

we	have	seen,	this	idealization	is	not	irreducible	if	we	can	use	the	topological	structure	of	system	space	in	our

reductive	explanation.	We	can	de-idealize	for	particular	systems	and	see	why	they	can	be	treated	as	if	they	flow

to	the	critical	point.	Understanding	the	behavior	of	infinite	systems	is	crucial	to	explaining	the	behavior	of	finite

systems,	since	we	only	get	the	fixed	points	by	examining	the	behavior	of	infinite	systems,	but	this	in	itself	does	not

imply	emergence.	We	agree	with	Batterman	(2011)	that	mathematical	singularities	in	the	renormalization	group

method	are	information	sources,	not	information	sinks.	We	disagree	with	his	contention	that	the	renormalization

group	explanation	requires	the	infinite	idealization	and	is	thus	emergent.	It	requires	consideration	of	the	behavior	of

infinite	systems,	but	it	does	not	require	us	to	idealize	any	finite	system	as	an	infinite	system.	Any	actual	infinite

idealizations	in	a	renormalization	group	explanation	can	be	de-idealized	using	finite-size	crossover	theory.

Locating	fixed	points	does	not	require	an	infinite	idealization,	it	just	requires	that	our	microscopic	theory	can	talk

about	infinite	systems,	and	indeed	it	can.

5.	Conclusion

Phase	transitions	are	an	important	instance	of	putatively	emergent	behavior.	Unlike	many	things	claimed	emergent

by	philosophers	(e.g.,	tables	and	chairs),	the	alleged	emergence	of	phase	transitions	stems	from	both	philosophical

and	scientific	arguments.	Here	we	have	focused	on	the	case	for	emergence	built	from	physics.	We	have	found	that

when	one	clarifies	concepts	and	digs	into	the	details,	with	respect	to	standard	textbook	statistical	mechanics,

phase	transitions	are	best	thought	of	as	conceptually	novel,	but	not	ontologically	or	explanatorily	irreducible.	And	if

one	goes	past	textbook	statistical	mechanics,	then	an	argument	can	be	made	that	they	are	not	even	conceptually

novel.	In	the	case	of	renormalization	group	theory,	consideration	of	infinite	systems	and	their	singular	behavior

provides	a	central	theoretical	tool,	but	this	is	compatible	with	an	explanatory	reduction.	Phase	transitions	may	be

“emergent”	in	some	sense	of	this	protean	term,	but	not	in	a	sense	that	is	incompatible	with	the	reductionist	project

broadly	construed.
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Notes:

(1)	As	an	example,	consider	multiple	realization,	often	presented	as	a	failure	of	reduction.	However,	it	is	only	a

failure	if	we	believe	that	a	lower-level	explanation	of	the	higher-level	law	must	be	unified	(i.e.,	the	explanation	must

be	the	same	for	every	instance	of	the	higher-level	law).	If	we	are	willing	to	allow	for	disunified	explanation,	then	we

may	indeed	have	a	genuine	lower-level	explanation	of	the	higher-level	law,	preserving	the	core	sense	of

reduction.

(2)	Strictly	speaking,	additivity	and	extensivity	are	different	properties;	see	Touchette	(2002).	Since	they	overlap

for	many	real	systems,	they	are	commonly	run	together;	however,	it	is	a	mistake	to	do	so	in	general,	for	some

quantities	scale	with	particle	number	N	(and	hence	are	extensive),	yet	are	not	additive.

(3)	Some	textbooks	even	go	in	the	other	direction,	namely,	defining	the	thermodynamic	limit	as	that	state	wherein

entropy	and	energy	are	extensive.

(4)	For	the	thermodynamic	limit	to	exist,	two	conditions	on	the	potential	in	the	Hamiltonian	must	be	satisfied,	one	on

large	distances,	one	on	small	distances.	These	extensions	can	be	viewed	as	challenges	in	either	length	scale.	In

another	sense,	however,	one	can	view	both	types	of	systems	as	unified	together	as	“small”	systems.	If	we	define	a

system	as	“small”	if	its	spatial	extension	is	less	than	the	range	of	its	dominant	interaction,	then	even	galactic

clusters	are	small.

(5)	A	small	movie	of	this	occurring	for	small	magnetic	clusters	is	available	at	http://smallsystems.isn-

oldenburg.de/movie.gif

(6)	This	chapter	shows	that	yet	another	definition,	one	based	on	a	bimodality	of	the	energy	distribution,	is	almost

equivalent	to	Def	3.	However,	the	bimodality	definition	is	equivalent	to	Def	2,	so	the	demonstration	links	Def	2	and

Def	3.

(7)	There	are	some	potential	connections	between	“explanatory	irreducibility”	and	notions	in	the	literature	on

idealization.	In	particular,	depending	upon	how	one	understands	Galilean	idealization,	it	is	possible	that	a

conceptual	novelty	is	explanatorily	irreducible	just	in	case	it	is	not	a	“harmless”	Galilean	idealization.	Coined	by

McMullin,	a	Galilean	idealization	in	a	scientific	model	is	a	deliberate	distortion	of	the	target	system	that	simplifies,

unifies	or	generally	makes	more	useful	or	applicable	the	model.	Crucially,	a	Galilean	idealization	is	also	one	that

allows	for	controlled	“de-idealization.”	In	other	words,	it	allows	for	adding	realism	to	the	model	(at	the	expense	of

simplicity	or	usefulness,	to	be	sure)	so	that	one	can	see	that	the	distortions	are	justified	by	convenience	and	are

not	ad	hoc.	Idealizations	like	this	are	sometimes	dubbed	“controllable”	idealizations	and	are	widely	viewed	as

harmless.	What	to	make	of	such	non-Galilean	idealizations	is	an	ongoing	project	in	philosophy	of	science.	One

prominent	idea—see,	e.g.,	Cartwright	(1983)	or	Strevens	(2009)—is	that	the	model	may	faithfully	represent	the

significant	causal	relationships	involved	in	the	real	system.	The	departure	from	reality	need	not	then	accompany	a

corresponding	lack	of	faith	in	the	deliverances	of	the	model.	It	is	possible	that	we	could	understand	the	standard

explanation	of	phase	transitions	as	a	distortion	that	nonetheless	successfully	represents	the	causal	relationships	of

the	system.	Perhaps	the	thermodynamic	limit	is	legitimatized	by	the	fact	that	surface	effects	are	not	a	difference-

maker	(in	the	sense	of	Strevens)	in	the	systems	of	interest.	We	will	leave	this	line	of	thought	to	others	to	develop.

(8)	Thanks	to	Jim	Weatherall	for	kick-starting	our	thinking	of	phase	transitions	as	delta	functions	that	can	be

approximated	by	analytic	functions	and	to	Jeremy	Butterfield	for	kindly	letting	us	use	an	advance	copy	of	his	2011

article.

(9)	The	problem	with	identifying	these	singularities	with	phase	transitions	in	thermodynamics	is	that	as	N	grows	the

order	of	the	phase	transition	also	increases,	roughly	as	N/2.	These	transitions	are	far	weaker	than	the	ones

encountered	in	thermodynamics,	and	in	any	case,	unobservable	in	real	noisy	data	unless	N	is	really	small.

(10)	Our	thanks	to	Robert	Batterman	for	pushing	us	on	this	point.
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