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Topology Change and the Unity of Space

Craig Callender*, Robert Weingardq

Must space be a unity? This question, which exercised Aristotle, Descartes
and Kant, is a speci"c instance of a more general one; namely, can the
topology of physical space change with time? In this paper we show how the
discussion of the unity of space has been altered but survives in contempor-
ary research in theoretical physics. With a pedagogical review of the role
played by the Euler characteristic in the mathematics of relativistic space-
times, we explain how classical general relativity (modulo considerations
about energy conditions) allows virtually unrestrained spatial topology
change in four dimensions. We also survey the situation in many other
dimensions of interest. However, topology change comes with a cost: a fa-
mous theorem by Robert Geroch shows that, for many interesting types of
such change, transitions of spatial topology imply the existence of closed
timelike curves or temporal non-orientability. Ways of living with this
theorem and of evading it are discussed. ( 2000 Elsevier Science Ltd. All
rights reserved.
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1. Descartes and the Unity of Space

In this paper we point out a connection between a traditional philosophical
issue about space and a topological invariant of that space, its Euler
characteristic. In tracing out that connection we will learn something about
topology and the topology of spacetime. Since many philosophers of science are
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not familiar with this topic, our exposition of topology change is primarily
pedagogical in nature. Our hope is that this paper will stimulate philosophers
to study the many fascinating issues that connect topology with modern
physics.

The philosophical issue is the unity of (three-dimensional physical) space.
While usually associated with Kant, Descartes discussed this topic in The
Principles of Philosophy (1644) and even earlier Aristotle devoted two chapters of
De Caelo to it. Focusing on Descartes' discussion, the question is whether
physical space could occur in two or more &complete' pieces, such that there are
no spatial relations between a point in one of the pieces and a point in any other
of the pieces. Each piece seems to be a &whole' space by itself, in the sense that it
is maximal*it cannot be isometrically embedded as a proper part in a connect-
ed space of the same dimension. In arguing that there &cannot be a plurality of
worlds' in the Principles (Part II, Principle XXII), Descartes is arguing, given his
identi"cation of space (extension) with material substance, that space must be
a unity.

His idea stems from his assumption that space is in"nite, and the thought that,
since space is in"nite, all the possible places are already part of the world or
space. But another, somewhat more general argument for the unity of space is
also suggested in the previous principle (XXI). Here Descartes argues that space
is &extended without limit', and he takes this to imply that space is in"nite. His
argument is

1. Space is extended without limit
/ 2. Space is in"nite
/ 3. Space is a unity " There is only one world.

But in fact 1 does not imply 2. Space could be &extended without limit'*be
maximal in the sense mentioned above*and not be in"nite. As is well known,
three-dimensional spherical space, whose geometry is equivalent to the intrinsic
geometry of a three-sphere in four-dimensional Euclidean space, is "nite
yet unbounded (i.e. without a limit). The more general argument suggested
is obtained just by dropping premise 2, that space is in"nite, and arguing
that

1. Space is maximal
/ 3. Space is a unity.

Descartes was arguing that space is necessarily a unity, but it is fair to say that
he identi"ed possibility and conceivability. These days we are supposed to know
better and we will talk only of conceivability, leaving the questions of possibility
and necessity to metaphysics proper.

With that said, however, it is easy to give a counterexample to the claim
&1 implies 3', in the sense that it is conceivable that space be maximal and yet not
be a unity. We simply make use of two ideas that are familiar from general
relativity: i) it is conceivable that space be spherical, and ii) it is conceivable that
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Fig. 1. Space dividing.

Fig. 2. An in,nite cylinder divides into two in,nite planes.

1This example is discussed in R. Weingard (1976).

the geometry of space is a function of time.1 Putting these together, we can
conceive of space not being a unity because we can conceive of spherical space
dividing into two (or more) spherical pieces. We can visualise this using a two-
dimensional analogue, where we use the surface of a sphere to represent
two-dimensional spherical space. The process of space dividing would then be
pictured as in Fig. 1.

While we are here picturing this taking place in a higher-dimensional embed-
ding space, this is obviously not required in general. The whole process can be
conceived of in an intrinsic way, from the point of view of creatures (two-
dimensional ones in our analogue, us in the case of three-dimensional space)
that live in the space. From our three-dimensional point of view we can conceive
of what it would be like, what we would perceive and measure, if space were
spherical and underwent the process of division. At no time must we think in
terms of a higher-dimensional space containing physical space.

So much for Descartes' more general argument. But what about the more
speci"c one for the unity of space, based on space being in"nite? Here again we
can conceive of space dividing into two pieces, but in this case the pieces are each
in"nite in every direction. A two-dimensional analogue would be an in"nite
cylinder dividing into two in"nite planes (Fig. 2).

Again we are here using the intrinsic geometry of surfaces to represent the
geometry of a two-dimensional space. In three dimensions, this corresponds to
the division of E2]S1 into two copies of E3 (En is n-dimensional Euclidean
space; Sn is n-dimensional spherical space).

This seems to answer Descartes' (and Kant's) question. So is that the end of
the discussion? No. Today we do not think of three-dimensional physical space
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as an independent structure, but rather as an aspect of four-dimensional relativ-
istic spacetime. There is no such thing as space, simpliciter, but only space
relative to a frame of reference. Relative to di!erent frames, space can have very
di!erent properties, as in de Sitter spacetime, in which whether space is "nite or
in"nite depends on the frame to which we are referring. Spacetime is the
fundamental structure, then, not space (and time), and that suggests a modern
form of Descartes' question. Must four-dimensional spacetime be a unity? In
fact, many contemporary philosophers, sparked by Quinton (1962), discussed
this question. And at least according to one prominent metaphysician, if it is
possible for spacetime to have been di!erent, then it is not a unity. But we do not
want to pursue these ideas here. It turns out that the question of the unity of
space, and related questions, are quite interesting when applied to space as an
aspect of spacetime. In fact, because of the constraints imposed by the nature of
relativistic spacetimes, the discussion of these questions becomes much richer
than in the case of space, simpliciter.

In particular, if we pose the issue of the unity of space in terms of our examples
of dividing space, then this question is a special case of the more general
question of whether the topology of space can change. This is more general
because if space divides it certainly changes its topology (connectedness is
a topological invariant), but topology change does not imply division. For
example, changing from being simply connected to being multiply connected,
say from S3 to S1]S1]S1, does not imply division. The more general question
is interesting for a number of di!erent reasons in physics. For example, consider
topological particles (&geons'), particles composed of space, in the sense that the
presence of such a particle is nothing more than space (or spacetime) having
certain topological properties. The particle might be a &handle' in space, and
then the question of whether the number of these particles can change is
a question of whether the topology of space can change. Another example where
this question arises concerns the issue of whether we can build time machines. If
&building a time machine' means creating a closed timelike curve*say, by
creating a wormhole*then one way this might work is by changing the
topology of space within a "nite region, for this may yield closed timelike curves.
Finally, another area where this question is interesting is quantum gravity.
Many approaches to the subject "nd topology change desirable*indeed, ines-
capable. String theory, Kaluza}Klein theory, topological quantum "eld theory,
Euclidean quantum gravity and others all make use of topology change.

Consequently, the more general question of whether the topology of space can
change becomes especially interesting in the context of space as an aspect of
spacetime. To appreciate this we need some facts about relativistic spacetimes.

2. Manifolds and Lorentz Metrics

We will take an n-dimensional relativistic spacetime to be a smooth (di!eren-
tiable) manifold equipped with a semi-Riemannian metric g with a Lorentz
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2 Interestingly, Descartes "rst discovered the Euler characteristic (though it was of course Euler who
recognised its signi"cance and developed it).

signature. That is, at any point p, if g(A, A)'0 for vector A, there exist vectors
B
i
, i"12n!1, at p such that MA, B

1
, B

2
, B

32
N are mutually orthogonal and

g(B, B)(0 for each i. This metric determines the familiar light cone structure of
a spacetime and the manifold is a spacetime only with respect to such a metric.
An important question for us is under what conditions does a smooth manifold
admit an everywhere de"ned Lorentz metric? We will always assume our
smooth manifolds have the required topological structure (paracompact, Haus-
dor! and di!erentiable). Since every di!erentiable manifold admits a globally
de"ned positive de"nite Riemannian metric, our question becomes: what else is
needed in addition to a positive de"nite Riemannian metric in order to obtain
an everywhere well-de"ned Lorentz metric? The answer is well known. Given
a positive de"nite Riemannian metric gH, the manifold admits a Lorentz metric
i! it admits an everywhere non-vanishing direction "eld < such that each point is
assigned one of a pair (A,!A), where A is a non-zero vector. Given the existence
of the direction "eld<, a Lorentz metric g is then de"ned, for all vectors B, C by

g(B, C)"gH(B, C)!2gH(A, B)gH(A, C)/gH(A, A) (1)

(see Hawking and Ellis, 1971, p. 39). We see that g(A, A)'0, so A is timelike,
and if gH(A, B)"0 (AoB), g(B, B)(0 and B is spacelike.

The question becomes, when does a manifold admit an everywhere non-
vanishing direction "eld? When the manifold is not compact, the answer is always;
when it is compact it admits such a xeld iw its Euler characteristic is zero (Hawking
and Ellis, 1971, pp. 40, 52). It is this latter result concerning compact manifolds
that will be crucial in our discussion of topology change, but "rst we must get
acquainted with the Euler characteristic.

3. The Euler Characteristic

In the "rst instance, the Euler characteristic is a property of polyhedra.2 In
three dimensions a polyhedron has two-dimensional faces (or sides), one-dimen-
sional edges that bound the faces, and zero-dimensional vertices that bound
edges. We can think of an edge as a one-dimensional face and a vertex as
a zero-dimensional face. In higher dimensions, a polyhedron can also have
n-dimensional faces which are bounded by (n!1)-dimensional faces, (n!1)-
dimensional faces bounded by (n!2)-dimensional faces, etc. Let F

n
be the

number of n-dimensional faces for a given polyhedron in D dimensions. Then
the Euler characteristic s of that polyhedron is given by

s"
n
+
1

(!1)nF
n
. (2)

It is a theorem that for a given compact manifold M, all the polyhedra
topologically equivalent (homeomorphic) to M have the same Euler
characteristic. Therefore, we de"ne the Euler characteristic of M to be the
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Euler characteristic of any polyhedron homeomorphic to it. However, note that
all of the polyhedra mentioned in the theorem must be &well-behaved'. Speci"c-
ally, every n-face has the same number of bounding (n!1) faces in any
polyhedron. A few examples are helpful.

A cube has six 2-faces, twelve 1-faces, and eight 0-faces, so s(cube)"
8!12#6"2, while a tetrahedron has four 2-faces, six 1-faces, and four
0-faces, and s(tetrahedron)"4!6#4"2. Both are homeomorphic to
a sphere, whose Euler characteristic is therefore 2. On the other hand, the
rectangular &donut' (or torus) has sixteen 2-faces, thirty-two 1-faces, and sixteen
0-faces, so s(torus)"0, in agreement with the fact that the torus and sphere are
not homeomorphic.

For a higher-dimensional example that will be useful later, consider a hyper-
cube in four-dimensional Euclidean space. It has eight cubical 3-faces, which
when they join together form two 2-faces, three 1-faces, and four 0-faces, so
s(four-cube)"(0-faces)!(1-faces)#(two-faces)!(three-faces)"8]8/4!
8]12/3#8]6/2!8"!8#8(3!4#2)"0. Since the hypercube in four
dimensions is homeomorphic to the three-sphere, S3, s(S3)"0. Note that
s(square)"!4#4"0, so s(S1)"0 as well. Thus we have the series:
s(S1)"0, s(S2)"2, s(S3)"0. As the reader might care to verify, this generalises to

s(S2n)"2, s(S1)"s(S2n`1)"0, for n*1 (3)

which is a fact we will use later.
Quite apart from the question of topology change, however, this fact has

interesting consequences for spacetime. It is a standard textbook fact, for
example, that de Sitter spacetime can be represented in "ve-dimensional Min-
kowski spacetime as a (pseudo-) hyperboloid of revolution*the locus of points
an equal spacetime distance from a given point. This is not a compact spacetime.
For ease of visualisation, think of the two-dimensional case in three-dimensional
Minkowski spacetime. Since it is a locus of points at equal &distances' from
a given point, it is a kind of (hyper)sphere. But four-dimensional de Sitter
spacetime does not have the topology of a four-sphere. It is not compact and not
simply connected.

Indeed, we know from the above that a compact manifold M admits
a Lorentz metric i! s(M)"0. Consequently, there is no spacetime with the
topology of the four-sphere, or more generally, with the topology of any
even-dimensional sphere. But of course there are even-dimensional compact
spacetimes. We have already seen that the Euler characteristic of the torus
equals zero (and it is intuitively obvious, anyway, that ¹2 admits an everywhere
non-vanishing direction "eld), and in four dimensions the same is true of S3]S1

and S1]S1]S1]S1. This is because

s(A]B)"s(A)s(B) (4)

and s(S1)"s(S3)"0. However, since S1 is not simply connected, neither are
S3]S1 nor S1]S1]S1]S1, and in four dimensions there are no compact
simply connected spacetimes. Once above four dimensions, however, there are
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Fig. 3. ¹wo-dimensional Minkowski spacetime rolled up along its spacelike axis.

compact simply connected spacetimes at each even dimension 2(2n#1); namely
S2n`1]S2n`1, where n*1. Here we are relying on the facts that the product of
simply connected manifolds are simply connected, and that the odd-dimensional
spheres do admit a Lorentz metric.

This fact about the odd-dimensional spheres can be seen quite intuitively by
looking at the embedding of S2n~1 in 2n-dimensional Euclidean space. Let
x
12

x
2n

be Cartesian coordinates for such a space with S2n~1 centred at the
origin x

i
"0. Then, as the reader can easily verify, for points (x

i2
x
2n

) on the
sphere, <"(x

2
, !x

1
, x

4
, !x

32
x
2n

, !x
2n~1

) is an everywhere non-van-
ishing vector "eld on S2n~1. Using <, we can de"ne a Lorentz metric on
S2n~1 using the Euclidean metric (we have a vector "eld rather than just
a direction "eld because spheres are orientable).

We can say something about spacetimes allowing backward time travel as
well. It is not hard to "nd spacetimes containing closed timelike curves, even #at
spacetimes such as two-dimensional Minkowski spacetime rolled up around its
spacelike axis, pictured in Fig. 3.

But this is not simply connected. Furthermore, there is a spacetime with the
same metric that does not have closed timelike curves: two-dimensional Min-
kowski spacetime. And that is generally true for spacetimes whose closed
timelike curves depend on the non-simple connectedness of the spacetime. Is
there a four-dimensional simply connected spacetime that contains closed
timelike curves? It follows that there are from the fact that S3 is simply
connected (Geroch, 1967, p. 782). Namely, since S3 admits a globally de"ned
Lorentz metric, the simple theorem that a compact spacetime contains at least
one closed timelike curve (Hawking and Ellis, 1971, p. 189) implies that a space-
time with the topology of S3 contains a closed timelike curve. A four-dimen-
sional spacetime with the topology S3]R is simply connected (since both
S3 and R are connected), and if R is spacelike, it thus contains closed timelike
curves, e.g. Taub}NUT}Misner spacetime. GoK del's famous spacetime contains
closed timelike curves (through every point), is simply connected, and is not even
compact, being topologically Euclidean!

4. Homology

We can gain further insight into the Euler characteristic from homology
theory. This is usually developed in terms of &polyhedra' (or simplicial
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Fig. 4. ¹he closed curves of a torus.

Fig. 5. ¹he closed curves of a double torus.

complexes) homeomorphic to a given manifold, but we will work intuitively
from the manifold itself. Let us begin by considering curves in two-dimensional
compact manifolds. Homology is interested in the number of independent
closed curves (curves without boundary) which are not themselves the boundary
of a two-dimensional region. The number of such curves is called a manifold's
&Betti number' b

n
(of the corresponding dimension) or order of connectivity, and

it is a topological invariant of manifolds. When we look at the number of such
independent closed curves in two dimensions, we are examining the one-
dimensional Betti number b

1
. Two such curves are not independent if together

they form the boundary of a two-dimensional region. On the sphere, all closed
curves bound an area and are homologous (not independent), while on the torus
there are three kinds of closed curves (see Fig. 4).

Curves of type a bound an area, while b and c do not. b and b@ are not
independent while b and c are independent, so the number of independent closed
curves that do not bound an area, b

1
"2. Consider now the double torus

(Fig. 5). a, b, c, d are four independent closed curves that do not bound areas.
e might look like a "fth such curve, but a, e, c together bound an area and are
consequently not independent. So here b

1
"4. Notice also that f bounds an area

since f and g are not independent and g bounds an area. f is a counterexample to
what the earlier examples might suggest, that a curve bounding an area is
equivalent to the curve being continuously contractible to a point. To think this
is to confuse homology with homotopy.
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Fig. 6. ¹he ,nite cylinder, torus and Klein bottle represented on the plane.

3More precisely, we are interested in closed oriented submanifolds of some manifold M which are
not themselves boundaries of M.

Next, consider boundary-less surfaces (closed surfaces) which do not bound
a volume.3 Since the sphere and torus are themselves two-dimensional, there is
no volume as part of themselves. Therefore, in each case there is one such
independent surface and the two-dimensional Betti number b

2
"1. The higher

b
n
then concern the number of independent closed &n surfaces' that do not bound

an (n#1)-dimensional region of the manifold in question. Thus, b
n
"0, n'2

for two-dimensional manifolds. That leaves b
0
. Since two points together bound

many curves, we can think of them as being non-independent. Thus, in a connect-
ed manifold b

0
"0 or 1. It turns out that it is always 1 (Nakahara, 1990).

The Euler}PoincareH theorem then tells us that for a manifold M,

s(M)"
n
+
1

(!1)nb
n
. (5)

For a sphere, b
0
"1, b

1
"0, b

2
"1, so

n
+
1

(!1)nb
n
"1!0#1"2"s(S2) (6)

and for the torus
n
+
1

(!1)nb
n
"1!2#1"0"s(¹2), (7)

agreeing with our earlier result. For the higher spheres Sn note that
b
0
"1, b

n
"1, b

m
"0, 0(m(n, since Sn is simply connected. For S2n

s(S2n)"b#b"2, s(S2n~1)"b
0
!b

n
"0, (8)

again agreeing with our earlier results.
Lastly, let us compare the "nite cylinder, torus and Klein bottle. These can be

represented in the plane of the paper using the indicated identi"cations (Fig. 6).
For the cylinder we have b

0
"b

1
"1; closed curves that &go around' the

cylinder do not (by themselves) bound an area, and all such curves are homolo-
gous, including the edges. But what about b

2
? The cylinder is not a boundary-

less surface. The curves a and b together are its boundary. So b
2
"0 and
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Fig. 7. ¹he projective plane as a disk.

v(cylinder)"1!1#0"0. For the torus, as we have already seen, s(¹2)"0.
The interesting point here is how the fact that the surface of the torus is
boundary-less is represented. In our picture a, b, a@, b@ are a kind of formal
boundary for the torus. However, notice that a is a@, b is b@ (by the identi"ca-
tions), and that to go around the area of the torus you have to traverse a in one
direction and then itself (a@) in the other, and similarly for b. The net boundary is
zero since its segments cancel. But that is not the case for the Klein bottle.
Although compact and without boundary in the topological sense, it has
a formal boundary in the sense that two trips around the closed curve b (a and a@
cancel) enclose the surface. Consequently b

2
"0 while b

1
"1*not 2 as in the

torus. The reason is that a and a@ bound an area (the whole surface) but a"a@.
Closed curves a such that na bound an area (in our formal sense) for some n do
not contribute to b

1
.

Important examples of this behaviour are the real projective &planes'. For
a given n, RPn is topologically the n-sphere with anti-podal points identi"ed. The
projective plane, RPn, can be represented as a disc whose opposing boundary
points are identi"ed (Fig. 7). Put di!erently, we get a representation of RP2 by
shrinking b to zero in our picture of the Klein bottle. By reasoning analogous to
that of the Klein bottle, b

0
"1, b

1
"0, b

2
"0 so s(RP2)"1. Analogously,

a solid ball whose opposing boundary points are identi"ed can represent RP3.
The Betti numbers are the same as in RP2 with the addition of b

3
"1 so

s(RP3)"0. As in the case of spheres, this pattern repeats:

s(RP2n)"1, s(RP2n`1)"0. (9)

That the Euler characteristic of the odd-dimensional spheres and projective
planes equal zero is a special case of the general result that all odd-dimensional
compact manifolds have v "0!

Like the familiar MoK bius strip, RP2 is non-orientable. A right-handed "gure
can be changed into its mirror image counterpart just by moving it around in
RP2. In Fig. 8, move the "gure to the left and it becomes the mirror image
counterpart of its earlier self. While all the even-dimensional projective planes
are non-orientable, remarkably, the odd-dimensional ones are orientable. In the
case of RP3 this can be easily visualised in terms of the solid ball with opposing
boundary points identi"ed.
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Fig. 8. ¹he non-orientability of RP2.

4Considering spacelike three-spaces that form the boundary of M ensures that we do not obtain
trivial cases of topology change resulting from strange choices of three-spaces. For examples of
&poor' choices of three-spaces, see Gowdy (1977). One may also care to examine, as Gowdy does,
topology change between null surfaces; however, because this sometimes results in counter-intuitive
instances of topology change, we stick with topology change between spacelike surfaces.

5. Topology Change in Classical Relativistic Spacetimes

Let us now return to the topology change of physical space within the context
of relativistic spacetimes. For purposes of simplicity we restrict ourselves to
closed physical space, i.e. compact without boundary. The standard way of
setting up the problem is as follows (cf. Borde, 1994; Geroch, 1967; Sorkin,
1986a). Let R

1
and R

2
be closed (n!1)-dimensional manifolds, which we are

thinking of as representing space at two di!erent instants (relative to some
frame). We want to know if there is an interpolating n-dimensional spacetime
whose boundary is the disjoint union of R

1
and R

2
and with respect to which

R
1

and R
2

are both spacelike.4 If there is and if R
1

is not homeomorphic to R
2
,

then we have a case of topology change. This question is then approached in two
steps. The "rst step is to ignore the question of the Lorentz metric and ask
whether, given two (n!1)-dimensional closed manifolds R

1
and R

2
, there is an

n-dimensional compact manifold M for which R
1

and R
2

are the disjoint
boundary. If such a manifold exists it is a cobordism for R

1
and R

2
, and R

1
and

R
2

are cobordant. When M exists the second step is to ask whether a Lorentz
metric can be put on M with respect to which R

1
and R

2
are spacelike.

For the "rst stage we will just quote the results and refer the reader to the
literature (e.g., Stong, 1968) . However, it is worth pointing out that there is much
of interest here due to the fact that for a given dimension n, the equivalence class
of cobordant manifolds has the structure of an abelian group (Milnor and
Stashe!, 1974); and composition of cobordisms is not commutative (Baez, 2000).
In the case we are most interested in, that of three-dimensional space, the answer
is that any two closed three-manifolds are cobordant, whether or not they
are orientable. This is Lickorish's theorem. However, other dimensions are
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Fig. 9. ¹opological equivalence of MoK bius strip and projective plane with the interior of a disc removed.

interesting as well. For unoriented closed manifolds, any two are cobordant in
dimensions 1, 3 and 7, while for oriented manifolds with an oriented cobordism,
any two are cobordant in dimensions 1, 2, 3, 6 and 7.

As for the second step, we already know the answer. If R
1

and R
2

are
cobordant, then the cobordism M admits a Lorentz metric i! the Euler charac-
teristic of M, s(M), is zero. But there is a quali"cation. We will want there to be
an everywhere non-zero vector "eld on the cobordism M that points outward
everywhere on R

1
(say), and inward everywhere on R

2
, so that R

1
is the initial

time and R
2

the "nal time. For dimension n of the cobordism, s(M) "0 is still
suzcient for even n. But for odd n, s(M) "0 automatically, though there is an
additional selection rule discovered independently by Reinhardt (1963) and Sorkin
(1986a): s(R

1
)"s(R

2
). Let us look at some examples.

In two dimensions the only compact manifolds that admit a Lorentz metric
are the torus, cylinder, Klein bottle and MoK bius strip. Except for the MoK bius
strip, we have already seen that s"0. But the homology of the MoK bius strip will
be the same as the cylinder. Since the torus and the Klein bottle are closed, they
represent (in the usual representation), one-dimensional space evolving into
itself, while the cylinder (again, as usually represented), is the case of no topology
change. The MoK bius strip, however, is more interesting. Notice that the MoK bius
strip is (topologically) equivalent to the projective plane with the interior of
a disc removed (Fig. 9). In this form we can easily see that it is an example of
one-dimensional closed space evolving into or out of nothing (Sorkin, 1986a)
(Fig. 10). Also, we can put a di!erent Lorentz metric on the cylinder so that we
get pair annihilation or pair creation of S1 (Borde, 1994) (Fig. 11).

We can also put the two together to get a Lorentz metric on the torus in which
/P/ by way of two copies of S1. Thus we do have examples of space changing
its topology in two-dimensional spacetime, but only in the sense of space
appearing or disappearing from nothing.
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Fig. 10. Closed space evolving into or out of nothing.

Fig. 11. Pair creation/annihiliation of S1.

Fig. 12. ¹wo-dimensional space fusion/division.

In fact, since S1 is the only closed one-dimensional manifold (RP1"S1), the
only case of topology change in the two-dimensional spacetime that does not
involve annihilation or creation would be space dividing or fusing as pictured in
Fig. 12. To compute its Euler characteristic, notice that the (m#n) circles do
bound an area, but (m#n!1) of them do not. Therefore b

0
"1, as always,

b
1
"m#n!1, b

2
"0 and

s(two-dimensional fusion/division)"1!(m#n!1)#1"2!(m#n).
(10)

For m#n'2, s(0 so a Lorentz metric cannot be placed on the manifold. In
two-dimensional spacetime closed space cannot divide or fuse.
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In three-dimensional spacetimes we can also give a complete account for
oriented two-dimensional closed manifolds. Any two closed oriented two-
dimensional manifolds are cobordant, and any three-dimensional compact
manifold has s"0 since it is of odd dimension. Therefore any two-dimensional
closed oriented manifolds are Lorentz cobordant (Yodzis, 1972), that is, their
cobordism admits a Lorentz metric. However, if we demand the additional
structure required for regarding one of the two-dimensional spaces as evolving
into the other, then the Reinhardt}Sorkin selection rule s(R

1
)"s(R

2
) must also

be satis"ed. But every closed oriented two-manifold is topologically equivalent
to a sphere with n-handles, where n*0. In other words, each such manifold is
equal to ¹

n
, a torus with n holes in it. For an n-torus, b

0
"1, b

1
"2n, b

2
"1, so

s(¹
n
)"1!2n#1"2!2n, (11)

which implies s(¹
n
)Os(¹

m
), mOn. The selection rule forbids any ¹

n
evolving

into a ¹
m
, mOn. Note also that since s(S2)"2, the division or fusion of

two-dimensional space*s(S2XS2)"s(S2)Xs(S2)*has an Euler characteristic
equal to four.

Unlike two-dimensional closed manifolds, any two closed three-manifolds are
cobordant, either by an oriented or unoriented cobordism. But the dimension of
the cobordism is even, so we no longer have the automatic s"0 as we had with
three-dimensional cobordisms. Nonetheless, we can show in this case that any
two closed three-manifolds are Lorentz cobordant. The proof relies on the idea
of the connected sum, M=N, of two n-dimensional manifolds M and N. To
form M=N, remove an n-dimensional open ball from both M and N, and then
identify the two resulting boundaries. As an example, we can look at the earlier
case of the projective plane (RP2) with a hole in it. This is the direct sum of (RP2)
and a closed disc D2. Since s(RP2)"1, s(D2)"1, forming the direct sum of
these two reduces the Euler characteristic of RP2 to zero (that of the MoK bius
strip). That is, s(RP2=D2)"s(RP2)#s(D2)!2. And in two dimensions this
relationship

s(M
1
=M

2
)"s(M

1
)#s(M

2
)!2 (12)

holds quite generally, as is readily seen from polyhedra, since to form M
1
=M

2
we join a face of M

1
to that of M

2
. Taking the faces to be squares, on joining we

lose two faces, four vertices and four edges, so s
1
#s

2
changes by

ds"d<!dE#dF"!4!(!4)!2"!2. Still more generally, this rela-
tionship holds for compact manifolds in any even dimension. Now, in four
dimensions, we have (Geroch, 1967):

s(S2]S2)"s(S2)s(S2)"2]2"4,

s(S1]S3)"s(S1)s(S3)"0]0"0,

s(CP2)"3. (13)

Therefore, if s(M
1
)"!D2nD, we can obtain a compact manifold (with the same

boundary) of s"0 by successive direct sums with S2]S2. If s(M)"D2nD, we do
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the same with S1]S3, while if s(M) is odd, we "rst get s(M#CP2)"even and
proceed as before. (Here CP2 is the projective plane in two complex dimensions.
s(RP4) is also odd but RP4 is not orientable.)

It follows that since any two closed three-manifolds are cobordant, by the
above procedure they can be made Lorentz cobordant. And therefore, if R

1
and

R
2

are oriented closed three-manifolds, there exists a compact four-dimensional
spacetime for which R

1
(say) is the initial time and R

2
the "nal time. From the

topological point of view we have (hardly) no restrictions on three-dimensional
space changing its topology! And note: this includes a three-dimensional space
dividing and fusing as long as the four-dimensional spacetime is connected
(Borde, 1994). For instance, an explicit example of a Lorentzian spacetime with
a branching o! of a bifurcating universe is CP2!3 balls. s(CP2)"3, and the
Euler characteristic of each 4-dimensional ball is 1, so s(CP2!3 balls)"0. And
it is possible to "nd a timelike vector "eld such that it points out of the S3's that
represent the past and into the one that represents the future. Thus the sort of
example we used against Descartes of space dividing turns out to be not only
conceivable but also (kinematically) physically possible, in some sense.

Is this the end of the story concerning topology change in four-dimensional
spacetime, at least as far as pure topology goes? The answer is &no', due to
a famous theorem of Geroch (Geroch, 1967). The theorem asserts that if closed
R
1

and R
2

do not have the same topology then the spacetime M either contains
closed timelike curves or is not temporally orientable. Let us discuss this.

Geroch's theorem tells us that topology change comes with a cost. But how
high is the cost? Is it so high that it makes it unlikely that our world's spatial
topology may change? To adequately answer this question, we would need to
investigate the e!ect &realistic' energy conditions have on topology change*in
particular, we would need to look at a famous theorem of Tipler to the e!ect that
realistic energy conditions preclude topology change. However, the interpreta-
tion of these conditions is controversial and there is more than enough to
discuss within the realm of pure topology, so let us postpone the discussion of
realistic energy conditions to another paper.

Before considering ways of evading Geroch's theorem, let us consider how
objectionable admitting closed timelike curves or temporal non-orientability is.
We think neither option is as bad as is commonly thought. First, consider
temporal orientability. Remember that a spacetime is temporally orientable i! it
admits an everywhere continuous and non-vanishing timelike vector "eld. If
a spacetime is not temporally orientable, then it is not possible to divide light
cones into past and future in a globally consistent and continuous way. Either
the direction of time at a point depends on your worldline through that point or
the direction of time changes discontinuously in some spacetime regions. How
serious this is depends on your views about the nature and origin of time's
(so-called) arrow. Here we want to make just three observations.

First, even a non-temporally orientable spacetime is locally temporally orient-
able in the sense that about each point there is an open neighbourhood that is
temporally orientable (as long as we stay in that neighbourhood). Insofar as the
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Fig. 13. MoK bius strip spacetime.

observed universe is temporally oriented, local temporal orientablility might be
enough even if spacetime is not temporally orientable.

Second, it is often pointed out that non-temporally oriented spacetimes are
not simply connected, and therefore there exists a spacetime with the same
metric which is simply connected (the universal covering space of the spacetime)
and therefore temporally orientable. The relevance of this remark is that if we
had reason to think that spacetime was not temporally orientable, we would
know that there is a spacetime that is (in some sense) compatible with the same
observational evidence and yet is temporally orientable. So we are never forced
by observation (alone) to hold that spacetime is not orientable. This may be, but
it does not follow that the orientable spacetime will be temporally oriented. For
example, consider the MoK bius strip spacetime pictured in Fig. 13, with asymmet-
ric processes ¹ and C. Because of the indicated identi"cations, it is not simply
connected. The universal covering space is the plane, which we can construct
from repeated strips of cut open MoK bius strip spacetime. Locally, it does look
like MoK bius strip spacetime. It is simply connected and temporally orientable.
But just as obviously it is not temporally oriented, if temporal orientation is
a matter of how asymmetric processes (broadly construed) are distributed in
spacetime (let C"a tree going from seedPtree, ¹"a sugar cube in cof-
feePdissolved in co!ee). In any case, if we only require local orientability as in
point one, this will not be a problem.

Third, note that non-temporal orientability and the existence of closed time-
like curves are independent properties. Cylinder spacetime (with a spacelike
axis) and GoK del spacetime are temporally orientable and contain closed timelike
curves; elliptic de Sitter*identify antipodal points in de Sitter spacetime repre-
sented as a hyperboloid of revolution in #at spacetime*is non-temporally
orientable but does not contain closed timelike curves.

Point one suggests that lack of temporal orientability is not that serious.
Point three, then, suggests that we can still have topology change without the
price of closed timelike curves by admitting non-temporal orientability. And
indeed, Sorkin (1986b) shows that giving up temporal orientability eliminates
the need for the Reinhardt}Sorkin selection rule in odd dimensions. Unfortu-
nately, this move to non-orientable spacetimes does not buy us much freedom.
As Borde shows, there are still severe restrictions on topology change: apart
from cases in which space is appearing or disappearing into nothing, topology
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change always involves the existence of closed timelike curves (so long as the
spacetime is compact). This route to topology change, therefore, is not as
interesting as we might have hoped.

However, that is not to say there is nothing of interest here (Friedman, 1991).
It is well known that the Hartle}Hawking 1983 model of the universe is one
wherein the universe has no past boundary. One can devise simple examples of
this model that have topology change without closed timelike curves (Sorkin,
1986a, b). One example is (RP4!ball), since s(RP4)"1, s(RP4!ball)"0.
This is the four-dimensional analogue of the MoK bius strip, as the reader will
recall from Figs. 9 and 10. The MoK bius strip has a single boundary that we may
take as the "nal hypersurface of the spacetime. By imposing a timelike direction
"eld normal to this boundary we describe a Lorentzian model of the Hawking}
Hartle cosmology with topology change but no timelike curves.

How bad is the other option, closed timelike curves? The physics community,
even the quantum gravity community who are so keen to allow topology
change, often view spacetimes with closed timelike curves as physically unrea-
sonable. Thus Hawking and others have hoped to prove Chronology Protection
Theorems that would rule out their existence. Closed timelike curves are
(mistakingly) viewed as opening the door to logical paradoxes, such as the
infamous &Grandfather paradox', whereby a time traveller following a closed
timelike curve goes back in time and kills his grandfather before the grandfather
impregnates the traveller's grandmother. Of course, as those who have read
Lewis (1976) or Earman (1995) know, there is no real danger here. Logical
contradictions cannot happen. If you go back in time to kill your grandfather,
you already tried it. Your actions in the past may have contributed to the
present being the way it is, but they cannot undermine it. Since you are around,
evidently you did not kill your grandfather. And your failure to be able to bring
about the impossible does not imply consistent time travel scenarios cannot
occur.

A less philosophical source of concern about closed timelike curves is the idea
that it will be impossible to de"ne a quantum "eld on a spacetime with such
curves. Anderson and DeWitt (1986), for instance, show that two-dimensional
&trousers' bifurcating spacetime (S2!3 discs) is unable to support a consistent
"eld theory. However, as the reader will recall from our discussion of two-
dimensional topology change, topology change on such a spacetime is imposs-
ible. The authors recognise this, of course, and de"ne a Lorentz metric on the
spacetime that is singular at a point (more on this in a moment). The resulting
spacetime experiences an in"nite burst of energy at the &crotch' singularity when
one imposes a scalar quantum "eld on it. However, as Friedman (1991) points
out, the trouble with de"ning a "eld on this indecent spacetime arises from the
singularity, not the closed timelike curves! So this example cannot be used as
part of an argument against topology change.

Without delving into the issue of the compatibility of closed timelike curves
and energy conditions, it seems the most we can say against them is that we do
not see them. But this only militates against common &medium-sized' closed time
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like curves. Large-scale or microscopic-sized closed timelike curves may still
exist without our knowing it.

Not sharing our open-minded attitude toward closed timelike curves, the
physics community keen to accommodate topology change is left in a bit of
a pickle. The now almost standard response to Geroch's theorem is to evade it
entirely with a drastic move shown to be available by Horowitz (1991) and
others. As Horowitz shows, if one lets the metric go to zero at isolated points,
that is, if one considers degenerate metrics, topology change can occur without
closed timelike curves (even on temporally orientable manifolds). Because this
move essentially rejects the &equivalence principle' at select points, it takes us
outside the realm of classical general relativity and thus our present discussion.
Yet we can mention that this approach to topology change faces many chal-
lenges. Central among them is de"ning the causal structure of spacetime ordin-
arily associated with a non-vanishing Lorentz metric. Work on this and on
related issues concerning the characterisation of these singular points using
Morse theory are being actively pursued (see e.g. Dowker and Surya, 1998).

Another means of escaping Geroch's theorem is by moving to topology
change occuring within non-compact regions of spacetime. (Geroch's theorem
holds for compact spacetimes, but it can easily be extended to arbitrary space-
times, so long as the topology changing region occurs within a compact set.)
These cases are not as interesting as the compact case to those researching
topological geons or to some other programmes, where one thinks of the
topology change as occuring &within a box'. However, they may be of interest to
cosmological questions, such as the one with which we began*namely, whether
the universe could divide into two new ones. Along these lines Karsnikov (1995)
has shown that there exist topology changing non-compact spacetimes that do
not violate the so-called weak energy condition or the stable causality condition.

Topology change, therefore, is not without a price. In the non-compact case,
many interesting topological transitions are lost. And in the compact case, for
topological transitions not originating or terminating in the null set, we require
either a degenerate metric or closed timelike curves.

Finally, let us make a few brief remarks about spacetime dimensions greater
than four. These are of interest because extra spatial dimensions are often
involved in theories that attempt, in some sense, to unify the di!erent funda-
mental interactions. We mention two such theories. First, Kaluza}Klein theory
attempts to give a geometrical explanation of gauge symmetries in terms of
geometrical symmetries of compact extra dimensions. In the original theory,
"ve-dimensional spacetime is rolled up along the extra spacelike dimension,
giving it the topology R4]S1. Electromagnetic gauge transformations then
correspond to a geometrical transformation along S1. If we want to include the
weak interaction (the U(1)]SU(2) electroweak theory) we need at least three
more compact dimensions. If we want the strong interaction included too,
a total of at least seven extra compact dimensions is needed, giving spacetime at
least eleven dimensions. Assuming compact physical space and orientability, the
selection rule s(R

1
)"s(R

2
) applies to topology change of the ten-dimensional
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5We would like to thank Nick Huggett for useful comments on a draft of this paper.

compact spacelike dimensions. Second, in string theory dynamical consider-
ations (quantising, interactions) single out twenty-six spacetime dimensions for
the bosonic string and ten for the fermionic string. Since spacetime here is of
even dimension, the selection rule does not apply.

There is much more that can be said about topology change. In particular, we
have not considered what restrictions the "eld equations of general relativity
impose on topology change. In general, the geometry of spacetime alone does
not signi"cantly restrict the available topologies. However, when one considers
realistic matter-energy sources, spinor structure, etc., there are de"nite results,
including Tipler's famous theorem. But these issues are quite controversial and
anyway go beyond pure topology. For now we are content to have displayed
some of the richness and life a question dating back to Aristotle still enjoys in
contemporary physics.5
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