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No Time for Time from No-Time
Eugene Y. S. Chua and Craig Callender*y

Programs in quantum gravity often claim that time emerges from fundamentally time-
less physics. In the semiclassical time program, time arises only after approximations are
taken. Here we ask what justifies taking these approximations and show that time seems
to sneak in when answering this question. This raises the worry that the approach is either
unjustified or circular in deriving time from no-time.
1. Introduction. Programs in quantum gravity often produce supposedly
fundamentally timeless formalisms. Because we observe change, it is impor-
tant that they recover time from no-time somehow. One popular idea suggests
that time emerges from fundamentally timeless physics, just as perceived
color arises from the fundamentally uncolored world of basic physics. In ca-
nonical quantum gravity’s semiclassical time program, the idea is that time
emerges from fundamentally timeless physics after taking semiclassical ap-
proximations. Nothing fundamentally plays the “time role” throughout any so-
lution, but time emerges in approximately classical sectors of some solutions.

Comparisons with perceived color suggest an obvious worry: circularity.
Physically, color only emerges from uncolored matter diachronically. Color
arises from observers like us interacting with matter across temporal inter-
vals. Replace color with time, and the threat is obvious: if time emerges from
no-time but emergence requires time, then we cannot really say we have de-
rived time from no-time. Time emerges if we blur our vision, but if blurring
takes time then time never disappeared.

Here, we raise this concern in a sharp way for the semiclassical time pro-
gram. Focusing specifically on the approximations necessary to derive time
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from no-time, we will show that time implicitly sneaks back in via the phys-
ical justifications behind these approximations. This leaves the program ei-
ther unjustified in applying the approximations because we are applying
them to timeless solutions or succeeding only on pains of circularity.

2. The Problem of Time and Emergence of Semiclassical Time. Quan-
tum gravity seeks to reconcile our best theory of gravity, general relativity,
with our best theory of matter, quantum theory. Different strategies exist, but
we focus on the oldest canonical approach, quantum geometrodynamics,
and its recovery of semiclassical time. We chose this program because it
has been rigorously developed. We expect, however, that many lessons will
generalize.

Canonical approaches employ a quantized Hamiltonian formalism. One
therefore casts general relativity into its Hamiltonian 31 1 form, decompos-
ing space-time into leaves of space-like hypersurfaces. The Hamiltonian
framework demands canonical variables and conjugate momenta. For grav-
ity, the basic variable is the three-dimensional spatial metric characterizing
space-like hypersurfaces. Its conjugate momentum is defined in terms of the
trace of the spatial three metric’s extrinsic curvature. In classical mechanics,
the Hamiltonian governs the spatial configuration of particles through time;
in classical Hamiltonian general relativity, the Hamiltonian governs the spa-
tial geometry itself through time. Once put in this form, we quantize.

The counterpart of the quantum state is a functional operating in a config-
uration space of spatial three metrics. To quantize, we turn the variables into
operators. Trouble arises because general relativity is a constrained Hamil-
tonian system. One of the constraints is due to general relativity’s time re-
parameterization freedom—we can foliate space-time inmany different ways.
This constraint, the Hamiltonian constraint, demands that the Hamiltonian
vanishes. Making the Hamiltonian an operator and imposing the constraint
yields

ĤW(hab(x), f) 5 0, (1)

that is, the famous Wheeler-DeWitt (WD) equation, where Ĥ is the Hamilto-
nian operator for both gravity and matter, and W is the WD wave functional
depending on the spatial three geometries encoded by the spatial metric
hab(x) and whatever matter fields we include (e.g., f, a massive scalar field).

The semiclassical time program’s core idea is that time emerges if hab(x)
is semiclassical. If not—if hab(x) is quantum—then the concept of time will
not find any realizer. This idea was expressed by DeWitt (1967) but devel-
oped by Banks (1985) in the canonical approach.1 The WD wave functional
1. See Kiefer (2004), Anderson (2007), and references therein.
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is, at the fundamental level, utterly timeless. Nonetheless it describes pat-
terns of correlations, just like a checkered shirt at an instant contains a spatial
pattern of correlations among stripes and colors. In the semiclassical inter-
pretation, the idea is that at a certain level of approximation, a pattern of cor-
relations “looks” temporal, just as a checkered shirt can look solidly colored
if one zooms out far enough.

By “looks temporal”we mean that a parameter plays the time role. While
defining the time role could become quite messy and philosophical, this pro-
gram adopts a veryminimal sufficient condition that seems plausible, namely,
that something plays the time role if it behaves as t does in the ordinary time-
dependent Schrödinger equation (TDSE). In other words, if the matter fields
vary with some parameter the same way they do with t in the TDSE, that war-
rants calling that parameter time.

Herein lies the key achievement of the semiclassical time program: given
suitable approximations, they show that the nontemporal gravitational fields
hab can play the time role in a functional Schrödinger equation for the matter
fields f. If one approximates from the WD equation appropriately, it looks
likematter is evolvingwith respect to time (a la Schrödinger equation) against
a classical gravitational curved space-time background (described by the semi-
classical Einstein-Hamilton-Jacobi equation).

Let us turn to the actual derivation of time and the functional Schrödinger
equation. Here we loosely follow a presentation by Derakhshani (2018). The
derivation has two crucial steps. One, it uses the Born-Oppenheimer (BO)
approximation to motivate factorizing the wave functional of the universe.
Two, it employs the Wentzel-Kramers-Brillouin (WKB) approximation on
the gravity term in this product. One can think of the first move as separating
out a subsystem from the total system. The second move shows that when
that subsystem behaves approximately classically, it can function as a clock
for the rest of the system.

Supposewe have awave functional that satisfies theWDequation and other
necessary constraints. This describes a static wave in a high-dimensional con-
figuration space. How do we get time?

To begin, notice that we do not expect quantum gravitational effects ex-
cept near the Planck scale. Since hab depends on the extremely small Planck
massmp, the idea of separating scales (via BO) is natural. Hence, we can sep-
arate the “heavy” part of thewave function, x(hab), from the “light” part,w(f,
hab):

W ≈ x(hab)w(f, hab): (2)

The idea is to use the hab degrees of freedom as a clock for the light part f.
We now apply a WKB approximation, substituting the ansatz AeiS for a

wave function. We do that for the first factor, the heavy subsystem, turning
the wave function into
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W ≈ A(hab)e
im2

pS(hab)w(f, hab): (3)

Next, expand S(hab) as a power series in m2
p:

S 5 m2
pS0 1 S1 1 m22

p S2:::: (4)

Then, as usual in WKB, we plug S0 and S1 terms back into the wave equa-
tion and solve. In the ordinary quantum mechanical case, the zeroth-order
term returns a Hamilton-Jacobi equation, and the first-order term returns a
continuity equation. Essentially the same happens here. Notably, solving to
leading order m2

p, we derive a semiclassical gravitational Hamilton-Jacobi
equation.

Take a solution of these equations. On the basis of experience with geo-
metric optics and quantum theory, we know it defines in superspace a vector
field whose integral curves can be parametrized by a time.With this in mind,
we define

_hab 5 2NGabcd

dS

dhcd

1 DaNb 1 DbNa, (5)

where Gabcd is the DeWitt metric, N is the lapse function, Da and Db are the
spatial derivatives, andNa andNb are shift vectors. One now takes the matter
wave function w(f, t; hab) and uses (5) to define a time derivative for it:

∂w(f, t)
∂t

5

ð
Σ

_hab(x, t)
∂

∂hab

w(f, hab)d
3x: (6)

Time emerges in terms of this directional derivative. Call this WKB time.
The final step uses WKB again, keeps only the lowest order terms, and re-

quires a lot of massaging. Skipping these details, we can show that w(f, hab)
satisfies a functional Schrödinger equation

i
∂
∂t
w(f, t; hab) 5 Ĥm(f; hab)w(f, t; hab), (7)

where Ĥ is a Hamiltonian-type term andw is evaluated at a solution hab, which
is itself a solution of the classical Einstein equation.

Such a compressed derivation may be confusing to unfamiliar readers.
The important takeaway here is that the twe used to parametrize the approx-
imately classical general relativistic solutions (corresponding to the first
“heavy” term in our factorization [2]) is used in a solution as a clock for the
matter fields in the WKB regime. The t in (7) is the same as that in (6). We
will not delve into the rest of the theory; however, note that we can also derive
a continuity equation that allows us to use the normal Born rule for predic-
tions from the theory, and furthermore, using perturbation theory—by con-
sidering higher-order terms we have so far ignored—one can derive nonclas-
sical predictions.
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In sum, the semiclassical derivation provides an elegant derivation of time
from no-time. Making a series of seemingly reasonable assumptions, a pa-
rameter that looks and acts like time emerges. And if we agree that something
that looks and acts like time is time, then time emerges.
3. Justifying the Approximations. We jumped from one equation to an-
other by expanding to leading order, focusing on lowest order, assuming
the wave functional approximately factorizes, and so on.What justifies these
steps? Approximations require physical justification. At the level of pure
math, one can “derive” virtually any equation from any other if allowed to
assume anything. It makes no sense to say that one equation or quantity is
“close” to another absent a metric. We need justification, and it is in this
physical justification that we fear time sneaks in.

To elaborate, we can treat classical pendulums as approximately undamped
harmonic oscillators. For small angles, sin(v) ≈ v, allowing us to derive equa-
tions of motion for pendulums that are identical to those of harmonic oscilla-
tors. A harmonic oscillator, we might say, “emerges” from the pendulum in
the small angle limit. But relative to some measurement standard, at some
point an initial displacement angle becomes too big and the approximation
fails; that is, we notice deviations from the derived equation ofmotion. Angles
are not intrinsically big or small. They are big or small relative to a standard.
Typically that standard refers to the observational or measurement capacities
of an observer. The approximation’s validity hangs partly on an error analysis
of our measurement technique. Coarse measurements allow the approxima-
tion to be good for greater values of v than finer measurements.

This example suggests a subtle problem for the semiclassical time pro-
gram and even the present analysis. We have no observers yet in canonical
quantum gravity. We are working in a partially interpreted theory, one lack-
ing a solution to the infamous measurement problem. Absent observers, we
cannot perform the above error analysis. When are (say) off-diagonal terms
in matrices “small” and justifiably ignored? The answer: when they are irrel-
evant to the observer (measurement/analysis/etc.). However, to introduce an
observer in order to have a standard for judging smallness, we effectively
already need time. Observation is a temporal process. So we can only justify
approximations by already introducing time, making the derivation circular.
Sans an observer, we cannot say what “looks” like a small difference that
would warrant an approximation.

We will return to this point, but for now we keep things simple by noting
that the approximations used to derive semiclassical time are always war-
ranted in the rest of physics by appeal to an implicit time metric. Without
the time metric, the approximations seem physically unwarranted. We do
not, and cannot, show that there is no standard possible warranting these
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approximations. What we can do is raise the worry and challenge advocates
of semiclassical time to justify the approximations without appealing to a
prior time standard. We will see that some apparently innocent assumptions
are, in fact, not.

Although the semiclassical time program has an estimated 20 assump-
tions (Anderson 2007), we will concentrate on three: the BO approximation,
the WKB approximation, and decoherence.

3.1. The BO Approximation. The BO approximation in the semiclassi-
cal time program splits the universe into two kinds of subsystems, the grav-
itational field h and quantum matter fields f. The justification for this split
ultimately appeals to a difference in masses: masses associated with h are
‘heavy’ in comparison to the masses associated with f (see, e.g., Banks
1985, 337–38; Kiefer 2004, 165). Therefore it seems plausible that h is
largely insensitive to f. By contrast, f, being small and light, is sensitive
to the big and heavy h. We therefore assume that the wave functional W
for the entire system (the universe) can be approximately factorized into
two wave functions x(h) and w(f, h), with x associated with the heavier
h, and w associated with both the lighter f and h, as per (3). This factoriza-
tion, as we have seen, is a necessary assumption in the above derivations.

On its face the rationale does not sneak time in. Some masses are larger
than others, and we expand accordingly. That is it.

Let us probe deeper. BO is motivated by appealing to the “very different
scales” (Kiefer 2004, 164) that the gravitational fields andmatter fields have.
This appeals to a metric that measures how big the effects of one subsystem
are on the other. Why does having different size masses warrant different
scales and factorizing the wave function? Differences in the values of other
properties (say, charge) do not always demand or legitimize such an approx-
imation. What is special about mass?

To help answer this question, let us look at standard uses of BO outside
quantum gravity. Unfortunately we will find that mass and size scale differ-
ences between systems are only relevant for BO because they are proxies
for timescale differences in the dynamics of the relevant subsystems.

In its most popular application—molecular and atomic physics—BO is
used to factorize an atom or molecule’s wave function into the product of
two subsystems. Here, the heavier subsystem is the nuclei, and the lighter
subsystem is the electrons surrounding the nuclei (Griffiths 2005). Again,
the heavier system is assumed to be effectively independent of the lighter sys-
tem, while the lighter system rapidly adapts itself to changes in the heavier
system. Usually, we pretend that the nuclear wave function is not chang-
ing at all in time and then calculate the electronic wave function associated
with that nuclear wave function. We then find a more realistic nuclear wave
function by letting it vary ‘slowly’ or ‘sluggishly’, calculating the possible
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ranges of electronic wave functions and hence the mean potentials in which
the nuclei can move.

More generally, BO applies in cases in which heavier subsystems are
known to change slowly in time with respect to lighter subsystems. That
is why mass matters. Heavier subsystems have significantly different char-
acteristic dynamical timescales—timescales over which “the parameters of
the system change appreciably”—and can be said to be adiabatic, with re-
spect to the lighter subsystems. The change in the lighter subsystem happens
on such a short timescale that there is not enough time for the heavier sub-
system to react in that relevant timescale, and so it is effectively independent
of lighter subsystems in that period of time. BO is thoroughly laden with
temporal notions.

Returning to the semiclassical time program, a problem arises. Because
BO is so widely used, and because it initially seems to be about mass (not
time), it may be imported into derivations without considering whether its
use in new applications is warranted. Did that happen here? We cannot say,
but we leave this section with a dilemma: either the mass scales relevant here
are proxies for timescales or not. If they are, we face circularity; if they are not,
we have no clear means of assessing whether BO is even applicable here. In
short, this seems to be a case of needing time to get time, but of course, in ca-
nonical quantum gravity we have no time for that.

3.2. The WKB Approximation. The WKB approximation is a staple of
every quantum mechanics course. Often presented as a piece of pure math,
WKB seems like a mere approximation method in the theory of partial dif-
ferential equations, an unlikely place to find a hidden time preference. But of
course, we still need physical justifications for why this math applies to a
given physical situation. For that we need physics.

Frequently, we use WKB when working with stationary states of energy
E > V . Immediately, we note that the time dependence is therefore hidden.
If a system begins in an energy eigenstate, then time evolution simply mul-
tiplies the state by a time-dependent phase factor that does not affect the
probabilities for measurement. Perhaps we should not think this way: here,
the time-independent equation is fundamental and the time-dependent one
is nonfundamental, contrary to ordinary quantum theory.

Still, we believe the approximation presumes the existence of time. We
see this most clearly with the textbook WKB derivation. Begin with the
one-dimensional time-independent Schrödinger equation (TISE) describing
a system in a background potential V(x):

d2w

dx2
1

2m

ℏ2 (E 2 V (x))w 5 0, (8)

or
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d2w

dx2
1

p(x)2

ℏ2 w 5 0, (9)

where we use the classical momentum identity:

p(x) 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m(E 2 V (x))

p
: (10)

If V(x) is constant, the system behaves like a free particle with w(x) ∼ eip(x). If
V(x) varies slowly, we expect that the system behaves approximately like a
free particle. Motivated by this, we find solutions to the TISE such that

w(x) 5 A(x)eiS(x)=ℏ: (11)

Plugging this back into the TISE, we get two equations (for the imaginary
and real parts, respectively):

ℏ
d2A

dx2
5 A

dS

dx

� �2

2
p(x)2

ℏ2

� �
; (12)

2
dA

dx

dS

dx
1 A

d2S

dx2
5 0: (13)

Everything so far is exact. However, note that (12) generally does not have
analytic solutions. What then? The solution, and a crucial step inWKB, is to
assume that A varies so slowly with respect to x that (d2A=dx2) ≈ 0.

This step allows us to solve (12) and (13) for A and S. Combining these
results, we get the well-known WKB approximation to the wave function:

w(x) ≈
Cffiffiffiffiffiffiffiffi
p(x)

p exp ±
i

ℏ

ð
dx p(x)

� �
, (14)

whereC is some real constant dependent on A and S. Arbitrary superpositions
of these wave functions are approximate solutions of the Schrödinger equa-
tion. They are also exact solutions of the classical Hamilton-Jacobi equa-
tion—from which one obtains the time parameter used in the semiclassical
time program.

Under what conditions are we allowed to neglect d2A=dx2? This is where
the physics enters. The answer is well known: Vmust vary slowly with x and
(E 2 V ) cannot be too small. When V is constant, and the system behaves
like a free particle, A is constant. When V is ‘close to constant’ (i.e., varying
slowly), so too is A.

On its face the condition of V “slowly varying” does not conceal any time
dependence since it concerns slowness with respect to the spatial x not the
temporal t. What motivatesWKB is that when the potential is not too spatially
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sharp one tends to not see much interference, so this important assumption is
about spatial smoothness not temporal variation.

Still, time is present. There are many ways to see this. An obvious one is
to consider the use of the classical momentum identity (10). In quantumme-
chanics, we know that the momentum operator depends only on spatial var-
iables and not time:

p̂ 5 2ih ∇: (15)

However, the classical momentum does depend on time, since

p 5 m
dx

dt
: (16)

Despite working in quantum mechanics, we used the classical momentum
identity without explanation. This lets us adopt the energy condition, E > V
not being too small (and E ≠ V ), to physically justify neglecting d2A=dx2.
But why are we considering E > V? The time dependence of (10) lets us
see why. Combining (10) and (16) and separating variables yields

ð
dt 5

ð
dx

mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m(E 2 V (x))

p : (17)

Now we see why E > V is the relevant condition for WKB. For any fixed
potential V(x), the integral on the right-hand side is small when E 2 V (x)
is large. As a result, the total timeDt 5 ∫ dt spent by a system in that constant
potential is very small. On the contrary, if E 2 V (x) is not too large (but
E ≠ V ), then the total time spent under a fixed V(x) is relatively longer.
The longer a particle generally spends time moving in each given fixed po-
tential, the slower we can say the potential is varying spatially. The latter fact
lets us derive WKB, but notice how the temporal metric is involved in the
physical justification.

One might worry that this imports ‘classical bias’ about particles into
quantum mechanics, but we see essentially the same point from a wave per-
spective. Note that if the potential spatially varies slowly with respect to the
particle’s de Broglie wavelength, then its wave function approximates that of
a free particle (i.e., a plane wave). That means the system will propagate
freely with a constant velocity v for a time T. As Allori and Zanghi (2009,
24) note, that time—the time for which we can pretend that V is effectively
constant—satisfies the following relation:

T ∼
L

v
, (18)

where L is the scale of variation of the potential. This provides a clear phys-
ical picture of what it means to applyWKB. If L is long and v is low, then the
0 Published online by Cambridge University Press

https://doi.org/10.1086/714870


NO TIME FOR TIME FROM NO-TIME 1181

https://doi.org/10.10
particle is moving slowly through an effectively unchanging V, allowing
WKB to hold for long times. Conversely, if L is short and v high, then the
particle rapidly moves (in time) through the potential—in these cases we
can no longer assume that V is effectively constant for the system, and WKB
will not hold for long times. This clearly parallels the classical case discussed
earlier.

Since l 5 ℏ=p 5 ℏ=mv, we can write (18) as

T ∼
Lml

ℏ
: (19)

The time dependence, evident when talking about velocities/momenta, be-
comes masked when we replace velocities with notions of wavelengths and
spatial variations. Yet the time dependence is plainly there. From (18) and
(19) we can see that if L is large, the WKB approximation will be good for
long T and if small then only for short T.

In standard cases WKB is thus justified via a background time metric. In
the case of semiclassical time, however, there is no such background time
metric, so we again face our challenge to justify the assumption without in-
voking time.

3.3. Decoherence. The discerning readermight have noticed two sleights
of hand in deriving the functional TDSE and ‘t’. First, in using BO, we ef-
fectively assumed that W was an eigenstate (3) of the WD equation. Since
theWDequation is linear, general solutions involve a superposition of states.
Second, a similar assumption was made in choosing the approximate WKB
wave function for the gravitational fields x(hab) in (3). Again, because of lin-
earity, arbitrary superpositions of states are also solutions. These assump-
tions are absolutely vital for deriving a functional TDSE (see Kuchař 2011).
Using an arbitrary superposition of states in the BO andWKB approximations,
the above procedures do not recover a semiclassical time.

The most popular response to these observations appeals to decoherence
(Kiefer 2004, 317). The idea is that if the initial state of the universe is in an
arbitrary superposition of states, then decoherence will drive the wave func-
tion into a superposition of effectively noninteracting components, each one
of which is suitable for the semiclassical time recovery. In an Everett-type
interpretation of quantum mechanics, for instance, we could recover a time
in each decohered branch or world.

Our worry is especially clear here because decoherence is normally un-
derstood as a dynamical process. It presumes temporal evolution by the
Schrödinger equation. Decoherence at once requires time and is required
for time. Indeed, one finds tension in Kiefer’s own account. First, he writes
that “a prerequisite [of decoherence in the semiclassical time program] is the
validity of the semiclassical approximation. . . . This brings an approximate
86/714870 Published online by Cambridge University Press
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time parameter t into play” (Kiefer 2004, 311). But later he writes that “since
[decoherence] is a prerequisite for the derivation of the Schrödinger equa-
tion, one might even say that time (the WKB time parameter in the Schrö-
dinger equation) arises from symmetry breaking [i.e., decoherence]. . . .
Strictly speaking, the very concept of time makes sense only after deco-
herence has occurred” (318). Obviously, the two claims cannot be true at
once, and again, we face our dilemma.

4. Discussion. Our investigations into three approximations integral to the
semiclassical time approach have unearthed a general worry: we seemingly
need to put time in, somewhere and somehow, in order to get time out of the
timeless formalism. This worry has not been noticed before, we suspect, be-
cause time is not blatantly assumed in derivations. It appears implicitly via
the justifications for the assumptions, not explicitly in the math.

Note that we have not shown the impossibility of answering our chal-
lenge. If we could make sense of an atemporal observer, perhaps we could
find a measurement standard that makes the terms ignored in BO, deco-
herence, and WKB small in some relevant sense. Absent such observers,
we observe that there is very little to work with in canonical quantum gravity
to help us. This point becomes clearer by comparing our objection to a sim-
ilar one leveled against decision-theoretic attempts to derive Born’s rule in
Everettian quantum mechanics.

As is well known, the Everettian interpretation faces a problem in making
sense of quantum mechanical probabilities. Its law consists only of a linear
deterministic wave equation. Therefore it produces only trivial probabilities
(0, 1) for any outcome. Born’s Rule, our guide to experiment, seems unex-
plained. In response, some Everettians have turned to decision theory, by
trying to prove that rational Everettian agents will set their preferences in ac-
cordance with Born’s Rule. Controversy ensues about whether the assump-
tions used in the proofs are really requirements of rationality.

But another line of criticismwill immediately sound familiar. Zurek (2005),
Baker (2007), and Kent (2010) point out that Everettians use decoherence
to say that different “worlds” approximately emerge from the wave func-
tion. What does “approximately” mean here? Well, it seems to mean that
a branching structure is likely to happen—the probability of an error is small
according to the Born measure (mod-squared amplitude). Yet the decision-
theoretic proofs begin with a branching structure. That begs the question, the
critics say, for we have assumed that mod-squared amplitude is a probability
in our demonstration that mod-squared amplitude is probability.

Structurally this objection is similar to ours. Can any replies there be trans-
ferred to our case?

The onlyEverettian responsewe found isWallace (2012, 253–54).Wallace
argues that the branching structure “really is robustly present” even before
0 Published online by Cambridge University Press
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interpreting mod-squared amplitude as probability. What standard makes it
present? His answer: Hilbert space norm. This is an objective physical mea-
sure. If branching emerges approximately with respect to Hilbert norm, then
the probability measure is not needed as an assumption in deriving Born’s
Rule. One could justifiably ask whether Hilbert space norm is enough to an-
swer the objection. Small differences in Hilbert space normmay not be small
differences for an observer or vice versa. From color science we know that
similar-looking colors (with small phenomenological distance) might be pro-
duced by physically dissimilar properties. Hilbert space norm might not be
enough to fully answer the charge.

However that debate goes, we lack anything like Hilbert space norm in
the present case. The space of spatial three metrics has a geometry given
by the DeWitt metric. But this metric will not say how far quantum states
are from one another. What we need, comparable to the Hilbert norm, is
an invariant positive-definite inner product on WD’s solution space. Here
we are right back to time. “Invariant”means the inner product is independent
of time. Constructing an invariant positive-definite inner product on WD’s
solution space is the notorious “Hilbert space problem” (Kuchař 2011).While
the Schrödinger equation provides a conserved inner product “for free,”WD
does not. The most natural way to solve the Hilbert space problem is to iden-
tify a time variable and construct a norm from that, but in this context that will
not help.

Again, we do not want to say that there is no way to warrant the approx-
imations. But we have argued that the most natural warrant appears tempo-
ral. We see no reason to think the introduction of observers will change that
verdict.

5. Conclusion. We started with the idea that the world was fundamentally
timeless: semiclassical time arises from certain regimes looking temporal
when we blur our vision. That metaphor turns out to be not quite right, as
it neglects that we have imported a mathematical construct, the Hamilton-
Jacobi structure, onto the basic physics. Only within that structure does time
seemingly emerge. Instead of blurry vision making a pattern of correlations
in the wave functions look temporal, what has happened is that we are being
offered “time glasses.”We are told you are justified in using these glasses—
this mathematical construct—and when we look through them, they turn the
pattern temporal. Are we justified in wearing “time glasses”? It seems the
only reason to wear them is when one already has time.
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