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Abstract By developing an absurd counterfactual history, I show that many objec-
tions launched against Bohmian mechanics could also have been made against New-
tonian mechanics. This paper introduces readers to Koopman–von Neumann dynam-
ics, an operator-based Hilbert space representation of classical statistical mechanics. 
Lessons for quantum foundations are drawn by replaying the battles between advo-
cates of standard quantum theory and Bohmian mechanics in a fictional classical 
history. 

Born in the year 1603 in a small hamlet in the Kingdom of Hungary, John von Newton 
was an extraordinary polymath. It was said that when he was only six years old that he 
could divide two nine digit numbers in his head while conversing fluently in Ancient 
Greek. Widely acclaimed as the last mathematician who was equally at home in 
pure algebra and applied alchemy, his contributions in the Wallachian Project of the 
Thirty Years War led to the development of the cannon known as the Orban II. While 
some may know him for his development of mechanical automata, “it’s-not-a-game” 
theory, and numerical astrology, his unparalleled advances in physics were what made 
him famous amongst contemporaries. However, these advances were controversial 
and quickly forgotten. This essay is a recounting of the astonishing breakthroughs 
made by John von Newton and their equally extraordinary reception. 

Due to the plague in 1620, von Newton (Fig. 1) was sent home and had to study 
remotely. Because lessons were wrapped in straw, it was called learning by Broom. 
While many students suffered greatly from Broom courses and the resulting social 
and intellectual isolation, the circumstances had the opposite effect on a prodigy 
like von Newton. Finally separated from teachers and students of inferior talent, he 
embarked on what can only be described as the most remarkable set of intellectual 
leaps to ever occur in world history. In short, in six months von Newton discovered an 
empirically adequate (then) new physics, a theory equivalent to classical statistical 
mechanics, and all of the mathematical innovations necessary to express this theory 
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Fig. 1 John von Newton 

(e.g., calculus, analysis). A month later he represented this theory with an operator 
formalism in a state space we now call Hilbert space. 

This achievement was completed in 1620, yet by the time he died in 1699 this 
massive feat was forgotten. (It is speculated that the tumor that killed him may have 
been due to his work with toxic alchemical materials while developing Orban II.) It 
took until the late 19th and early 20th centuries for science to rediscover what von 
Newton already learned. In what follows I will summarize what he accomplished 
and his fate. 

1 The Classical Schrödinger Equation 

Contemporary writers said that von Newton would often go to bed troubled by a 
problem and wake up with the solution. That is why he kept a quill pen and parchment 
by his bedside. We don’t know what problem he had in mind on the night of Feb 3, 
1620, but the sepia-colored notepad from Feb 4 survives (Fig. 2). On it one can make 
out the faded remains of an equation that takes the following form 

.i
∂Ψ

∂t
= ˆLΨ (1) 

when put in modern terminology. Here .Ψ (ϕ) is a classical wavefunction that is a 
ray in a complex Hilbert space. Unlike in quantum mechanics, its domain is phase 
space.ϕ = (q, p), not configuration space. The generator. L̂ is the Hermitian Louiville 
operator and it evolves the ray through Hilbert space with time. 

Equation (1) wasn’t (re)discovered until the 1930s by Koopman (1931) and a year 
later by von Neumann (1932). Working in the context of ergodic theory, Koopman 
showed that unitary transformations are central to classicla physics. In so doing
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Fig. 2 Some of von Newton’s calculation 

he proved that if a wavefunction .Ψ (ϕ) satisfies (1) then the probability density 
.ρ(ϕ) = |Ψ (ϕ)|2 satisfies the classical Liouville equation .∂tρ = {H, ρ}, where . H
is the classical Hamiltonian of the system. Although this result should be widely 
known, apparently it is not as it has been rediscovered many times, often by very 
prominent physicists, e.g., Berry, Wiener, ’t Hooft. 1

von Newton’s equation obviously bears a great similarity to its more famous 
cousin, the Schrödinger equation of quantum mechanics: .i ∂Ψ

∂t = ĤΨ . Working 
through von Newton’s notebooks, we were astonished to see how “quantum mechan-
ical” his formalism was. He began with four postulates: 

1. The state of the system is represented by a vector.|Ψ 〉 in a complex Hilbert space. 
2. The state space of a composite system is the tensor product of the subsystems’ 

state spaces. 
3. For any observable . A, there is an associated Hermitian operator . Â and eigen-

value problem . Â |A〉 = a |A〉. The eigenvalue . a is understood as representing a 
particular outcome measured in a lab. 

4. The probability of measuring . a is given by .P(a) = |〈A| Ψ (t)〉|2. von Newton 
called this “Bodor’s Law” . 

von Newton called postulate 4 “Bodor’s Law” in honor of a friend who sold the 
best goat milk in the hamlet. However, the name probably stuck because Bodor was 
renowned for his gambling prowess. von Newton interpreted Bodor’s Law as arising 
due to an instantaneous collapse of the state .|Ψ 〉 into the eigenstate .|A〉 associated 
with the measured eigenvalue a.

1 See Berry (1992), Chirikov, Izrailev and Shepelyanskii (1988), Della Riccia and Wiene (1966), 
and ’t Hooft (1997). The “classical Schrödinger equation” (1) should not be confused with another 
“classical Schrödinger equation” derived in the 1960’s by Schiller (1962) and  Rosen (1964). This 
later equation defines the wavefunction on configuration space .Ψ (q) whereas (1) applies to a 
wavefunction over phase space. 
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Because there is no uncertainty relation in classical physics, position and momen-
tum have a common set of eigenstates in von Newton’s Hilbert space. As men-
tioned, the eigenkets therefore live in phase space, not configuration space, i.e., 
.|A〉 = |q, p〉 = |q〉 ⊗ |p〉. The vectors.|q, p〉 form a basis of the space. By assuming 
what we would call a “classical commutator”.

[
q̂, p̂

]
= 0 rule, von Newton was able 

to derive Eq. (1) from these four postulates (Bondar et al. 2021). Without modern 
mathematical physics at his disposal, unfortunately it took von Newton 250 pages of 
calculation to get this result. Helping ourselves to modern results such as the Ehren-
fest Theorems and Stone’s Theorem, today we can derive (1) very quickly (Wilczek 
2023). Interestingly, recently (Bondar et al. 2012) show that replacing the classical 
commutator with the quantum commutation relations but otherwise retaining the 
same postulates .1 − 4 as above leads to standard quantum mechanics. In 1620 von 
Newton was only one tiny adjustment from discovering quantum theory! 

In any case, the resulting theory is an operator-based probabilistic theory that 
makes predictions about the values of measurements. The generator of motion 
evolves the state in a complex Hilbert space between measurements via (1) just  
as the Hamiltonian does in the Schrödinger equation. The norm.〈Ψ (t)|Ψ (t)〉 is con-
served by the time evolution, which helps justify Bodor’s Rule. And one can calculate 
expectation values of observables and even easily switch vector bases as one does 
in quantum mechanics. See Gozzi and Mauro (2004), Jordan and Sudarshan (1961), 
Mauro (2002), and Bondar et al. (2012) for the state of the art on Koopman–von 
Neumann dynamics. 

As much as it looks like quantum mechanics, however, von Newton’s theory was 
purely classical. The wavefunction lives in phase space, not configuration space. And 
the probabilities are the ones predicted by classical statistical mechanics, not quantum 
mechanics. The probabilities predicted by Bodor’s Rule correspond precisely to 
solutions of classical statistical mechanics, i.e., the probability densities given by 
the classical Liouville equation. In a two slit experiment (see Mauro 2002 for a 
clear analysis) the phases of the classical waves cancel out and the total probability 
distribution on the screen is the sum of the probability distributions for each slit, 
reproducing what we expect classically. The theory was empirically adequate to 
then known empirical phenomena, which at this time consisted mostly of cannon 
ball trajectories. 

2 Reception 

When the plague ended, von Newton promoted his theory at various august academic 
bodies throughout Europe. With such a breathtaking set of advances, he expected to 
be lauded as having produced a great triumph of reason. “If I have seen further,” he 
said, “it is because I stand as a giant.” Instead the response was somewhat chilly. 
Scientists were impressed, but they felt uneasy about von Newton’s product. His peers 
wanted to understand the nature of physical reality. Rene Descartes had posited a 
world consisting of corpuscles organized in complicated vortexes, but what was von
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Newton offering? A kind of operationalist “black box” quality pervaded his theory, 
as his operator formalism provided only predictions for various observables. 

At the University of Zurich he met a physicist named Albert Mechanstein, who 
would prove to be a real thorn in von Newton’s side. Mechanstein was a disciple 
of the philosophy of Descartes. He said to von Newton that it’s all well and good 
that you’ve accurately predicted the probability distribution of a bunch of cannon 
balls hitting a castle wall and of arrows entering sniper windows, but you don’t say 
anything about what constitutes these balls, arrows, and walls, nor the reason why 
they behave the way they do. von Newton replied, 

Since a good theory must be based on directly observable magnitudes, I thought it more 
fitting to restrict myself to these.  

As von Newton later recounted, Mechanstein was stunned: 

But you don’t seriously believe that none but observable magnitudes must go into a physical 
theory?...It is the theory which decides what we can observe. 

von Newton was equally upset, reporting that he was “completely taken aback by 
[Mechanstein]’s attitude.” 2 He felt that it is “wrong to think that the task of physics 
is to find out how nature is”; rather, he thought, “Physics concerns what we can say 
about nature.” 3

As he travelled von Newton heard more objections. Pressure was put on the rela-
tionship between Bodor’s Law and Eq. (1). von Newton held that we have “two 
fundamentally different types of interventions which can occur in a system; when an 
object is undisturbed, Eq. (1) “describes how the system changes continuously and 
causally in the course of time” but once measurement happens something “discon-
tinuous, non-causal, and instantaneous” occurs, i.e., the collapse via Bodor’s Law to 
an eigenstate. 4 The dynamics is deterministic when no measurement is happening, 
but indeterministic when it is. 

This response, however, only focused attention on the role of measurement in 
von Newton’s theory. Like standard quantum theory, von Newton’s theory has a 
measurement problem. 5 Equation (1) is linear and allows superpositions of macro-
scopic outcomes; measurement collapses these superpositions to an eigenstate of 

2 Heisenberg recounting his discussions with Einstein, quoted in Becker (2018), 29. 
3 Bohr on physics after the Solvay conference, quoted in Becker (2018), 49. 
4 von Neumann describing his two dynamics, quoted in Becker (2018), 67. 
5 The two measurement problems are slightly different and interesting to consider. As Mauro 
(2002) emphasizes, the fundamental difference to consider. As Mauro (2002) emphasizes, the 
fundamental difference between Koopman–von Neumann theory and ordinary quantum theory is 
that in the former but not the latter the phase interacts with the modulus. Contrast a Madelung 
decomposition of Eq. (1) with the Schrödinger equation. Write the quantum wavefunction as 
.ψ(x) = A(x)exp[i/!S(x)]and substitute it into the Schrödinger equation and then separate real 
and imaginary parts. Then as is well known one obtains 

. 
∂S
∂t

+ 1
2m

(
∂S
∂x

)2

+ V = !2

2mA
∂2A
∂x2

.m
∂A
∂t

+ ∂A
∂x

∂S
∂x

+ A
2

∂2S

∂x2
= 0
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the relevant observable. What interaction qualifies as a measurement, Mechanstein 
asked? 

von Newton’s acolytes differed on this question. Some said that a measurement 
only occurs when an outcome has been registered by a divine soul. That raised 
the question of who had souls. The Synod of Mâcon had long ago clarified that 
women had souls and Descartes compellingly argued that animals do not. But what 
about pagans and serfs? They certainly looked and acted like they could apply von 
Newton’s theory as well as anyone, but did they have divine souls? And what types 
of souls were necessary? Was having only a vegetative soul sufficient to collapse a 
wavefunction? 

Other acolytes did not use souls but understood measurement as an interaction 
between systems described in different ways. Bohr taught us that measuring devices 
are inherently classical, that the interaction between the classical and the quantum is 
central to explaining measurement. It’s amazing to learn that there was a counterpart 
to this Bohrian position back in von Newton’s day. One of his followers held that 
measuring devices are essentially medieval. What triggers a measurement is the 
interaction of a classical system with a medieval one, e.g., catapult, plough, water 
mill. Opponents felt that “medieval” was too vague to be a fundamental category in 
a physical theory. 

A common theme emerged: scientists of the day didn’t like the fundamental split 
between measurer and measured. Shouldn’t the measurer—be they a stone mason, a 
nobleman, or a scythe—be itself describable in the language of physics? Why must 
there always be this shifty subject/object split in physics? von Newton’s protestations 
that “for all practical purposes” it didn’t matter found few sympathetic ears. 

where one can see that the phase . S is coupled to the modulus . A. Do the same for the classical 
wavefunction.ψ(x) = F(q, p)exp[i/!G(q, p)] when inserted into (1). Then we get 

. i
∂F
∂t

= ĤF

. i
∂G
∂t

= ĤG

and no coupling between .F and . G. (Why then introduce phases at all? They become necessary 
if one wants the freedom of basis one gets in Hilbert space; see Mauro 2002.) As a result of this 
decoupling, wavefunctions without phases cannot generate them in their time evolution. Hence the 
measurement problem is a bit different than quantum mechanically. In the language of foundations 
of physics, the classical measurement problem associated with Koopman–von Neumann is like the 
quantum one if decoherence worked perfectly, driving the off-diagnol terms to exactly zero. That 
still leaves a measurement problem, the so-called “and” to “or” problem of Bell (1990) (see also 
Maudlin 1995). On the classical measurement problem, see Chen (2022) (section 5.4), Katagiri 
(2020), and McCoy (2020).
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3 Classical Mechanics Without Obs’rv’rs 

What really put pressure on von Newton’s theory was the remarkable development 
of a mechanistic theory by someone with essentially the same name, Isaac Newton. 
In 1687 Newton published the Philosophiæ Naturalis Principia Mathematica. The  
Principia posited an ontology of corpuscles who always evolve according to the 
same dynamical equation. Cannon balls, cannon ball parts, cannon ball operators, 
and cannon ball victims could all be described at once by Newton’s famous second 
law. There was no subject/object split, no fine discussions of what types of souls 
or medieval devices collapse wavefunctions, or any of that. Positing one basic law 
rather than two, Newton offered what he called a “mechanics without obs’rv’rs.” 

In our age, Newton is famous for offering a physics that unified celestial and 
terrestrial spheres, the heavens and the earth. Back then he was also known for having 
provided a deeper unification of von Newton’s process 1 dynamics (the deterministic 
Eq. 1) with von Newton’s process 2 dynamics (Bodor’s law). He unified the spheres 
.and the two types of dynamics. 

More than that, Newton offered the physical “nut-and-bolt” explanations that 
people didn’t find in von Newton’s physics. In a siege of a castle, one might shoot 
a cannon aimed at a wall many times. Cannon operators noticed a kind of normal 
statistical pattern developing on the wall. Again and again, attack after attack, similar 
probability distributions appeared on castle walls. Why? von Newton’s physics would 
predict these distributions, but they couldn’t answer why they might appear like this. 
It would be a very hard calculation to do, but Newton’s physics at least offered one 
understanding of what must be going on. Small changes in the initial positions and 
velocities of the cannon balls, plus tiny fluctuations in their mass, are to be expected. 
Patterns in these differences are then responsible for why the cannon balls form these 
distributions. 

More generally, going back to Mechanstein’s complaint, the theory “decides” 
what is observable. That is, we can explain what is observable in terms of the posited 
ontology—corpuscles—and laws. We do not begin with observations as primitive, 
but offer explanations for why we observe what we do. These explanations were 
possible because Newton offered an ontology and clear laws, something that von 
Newton rejected. 

When Newtonians ultimately derived von Newton’s theory from their own, that 
was the death knell of the latter’s influence. Suppose we have a swarm of Newtonian 
corpuscles sweeping out continuous trajectories through time. We can think of this 
as a kind of fluid described by a density .ρ(x, p, t). If we insist that its value is non-
negative and real, it can be interpreted as the probability of a particle being at point 
. x at time . t with momentum . p (using measure .

∫
dxdp). It follows from Newtonian 

mechanics that the flow of this fluid is incompressible, which implies that 

.
∂p
∂t

= −ẋ
∂ρ

∂x
− ṗ

∂ρ

∂p
(2)
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holds, which provides a dynamics for . ρ. Equation (1) can be derived from (2) by  
defining a wavefunction .ρ ≡ |Ψ (x, p)|2 and multiplying both sides by . i (Wilczek 
2023). So with Newton one could get all of von Newton’s predictions but also explain 
why we were observing what we do. We could open the black box and see what’s 
going on. 

4 Criticism of Newton 

von Newton and his advocates did not take these provocations lightly. They viciously 
attacked Newton and his physics. One giant defender of von Newton did not deign to 
comment on Newton’s physics directly, but through intermediaries said it was “very 
foolish.” 6 Another very distinguished physicist called it “artificial metaphysics.” 7

Some took an extremely bold position (bold because manifestly false) and held that 
that there was no alternative to von Newton and his interpretation, that von Newton’s 
physics “eminently possesses this character of uniqueness” in it. 8 Mostly inspired 
by an extreme empircist or even positivistic philosophy, these objections fell on deaf 
ears among the Cartesians and Newtonians of the day. 

von Newton even made a political case against Newton. Like Leibniz, he wrote to 
Princess Caroline of Ansbach complaining about Newton’s theory. Leibniz accused 
Newton of positing occult qualities through his non-local gravitational force and 
of requiring God to act as a clockmaker, fixing his product from time to time. von 
Newton picked up on this and also complained that Newton’s clockwork universe 
deprived us of free will whereas his indeterministic theory made room for it. Newton 
was summoned before Parliament’s House for Unpious Activities Committee as a 
result, but he answered the charges so well that no stain was left on his reputation 
and he was ultimately made Master of the Royal Mint. 9

Finding fewer and fewer supporters, von Newton could only find an employment 
with a few of his followers at the University of Copenhagen. There he toiled in 
obscurity until the minstrels only sang of Newton and never the great von Newton. 
In some sense he had the last laugh, however, as his papers left in the gorgeous library 
at the University of Copenhagen were found by a young physicist named Niels Bohr.

6 Bohr on Bohm, cited in Becker (2018), 107. 
7 Pauli on Bohm, cited in Becker (2018), 107. 
8 Rosenfeld (1957), 4–42. 
9 See Cushing (1994) for many objections to Bohm along these lines, especially by Pauli. Cushing 
also details the political attacks on Bohm. 
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5 Lessons from the Rise and Fall of von Newton 

It’s an honor for me to write in a volume dedicated to Detlef Dürr. He filled a room 
with both his warmth and knowledge. It would be impossible for me to quantify how 
much I learned from him and his group. One article that made a special impression 
is “Naive Realism about Operators”, which inspired this paper. “Naive Realism...” 
shows in detail how the entire Hilbert space operator formalism mechanics can be 
derived from natural assumptions and moves from Bohmian mechanics. It argues that 
one should not confuse mathematical operators with physical properties of systems. 
Doing so leads to a fetishization of the quantum operator algebra that becomes an 
even bigger problem than the measurement problem. 

In my absurd counterfactual history, I mimic this situation classically. I imagine 
that a measurement operator formalism arose first and then Newton came along 
with a dynamics for classical “beables” (an always determinate ontology). From this 
dynamics and ontology, one can then derive in detail how the entire Koopman–von 
Neumann Hilbert space operator formalism might arise. In the actual world, we 
had Newton first and Koopman–von Neumann second; and later, standard quantum 
theory first, Bohmian mechanics second (by only two years in the form of de Broglie). 
Should the temporal order of these appearances matter? I don’t think so. Yet it seems 
almost unconscionable to launch the counterparts of the objections directed at Bohm 
in the actual world to Newton. Newtonian mechanics is rightly celebrated as one 
of the great achievements of science. While there are of course differences between 
the cases of Bohm and Newton, many common objections do not rely on these 
differences. 

Since we can deduce the operator formalism of Koopman–von Neumann from 
Newtonian dynamics and had the latter first, we were never tempted to be “naive 
realists” about classical operators. But had things worked out differently, we might 
have been. We’re often better at seeing mistakes in the past than the present, so I 
invented a counterfactual past and transported mistakes across times and worlds. 10

Another lesson of the Koopman–von Neumann theory is that it is important to 
tease apart features of a particular mathematical representation of a theory from the 
theory itself. Features of a representation have a pernicious way of sneaking into 
our interpretation of the theory and how we evaluate it and alternatives. Jennings 
and Leifer (2016) ask “what phenomena of quantum theory are intrinsically non-
classical?” To answer this question they apply a criterion: 

If a phenomenon of quantum physics also occurs within a classical statistical physics setting, 
perhaps with minor additional assumptions that don’t violently clash with our everyday con-
ceptions, then it should not be viewed as an intrinsically quantum mechanical phenomenon. 

They conclude that many “commonly touted phenomena” such as randomness, com-
plementarity, collapse of the wavepacket, the use of wavefunctions and Hilbert space, 
and more, cannot be marks of intrinsically quantum phenomena. I wholeheartedly 
agree. By placing classical statistical mechanics in an operator-based formalism in

10 See Nikolić (2008) for a less incredible counterfactual history toward the same point. 
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Hilbert space, Koopman and von Neumann demonstrably show that many of these 
representational features are not inherently quantum mechanical. Not only is classi-
cal physics expressible in a similar formalism, but it can also employ collapses of 
the wavefunction, Born’s Rule, a fundamental subject/object split, and two types of 
dynamics. The operator measurement formalism seems to almost invite an interpre-
tation with an instrumentalist flavor. 

If one is a naive realist about classical observables, Koopman–von Neumann even 
has a measurement problem. But that is the result of a choice, a bad choice. Classical 
statistical mechanics does not have a measurement problem. Neither does quantum 
mechanics if one adopts a decent interpretation, e.g., the Bohmian mechanics that 
Detlef prized. The measurement problem in Koopman–von Neumann makes this 
point plain. There it results not from the peculiarities of the classical world but from 
the peculiarities of “quantum philosophy” applied to the classical world. As Detlef 
saw much better than most, the same is true in quantum physics. That is the ultimate 
lesson of the tragedy of the great and forgotten John von Newton, the naive realist 
about classical observables. 

Acknowledgements Thanks to Jacob Barandes, Eddy Chen, Casey McCoy, the audience at the 
University of Lisbon’s Open Problems in Philosophy of Physics conference, and the UC San Diego 
philosophy of physics reading group for helpful comments. Details of von Newton’s life were drawn 
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