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According to D. Bohm's interpretation of quantum mechanics, a par-
ticle always has a well-defined spatial trajectory. A change in bound-
ary conditions can nonlocally change that trajectory. In this note we
point out a striking instance of this phenomenon that is easy to un-
derstand qualitatively.
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In a recent paper, R. E. Kastner [5] uses D. Bohm's [1] interpreta-
tion of nonrelativistic quantum mechanics to give an account of a
simple example of quantum nonlocality (for recent work on Bohm's
theory, see [2, 3, 4]). The example is the change of a single particle
wavefuncion when it is forced to go through a tube. We would like
to emphasize, though Kastner does not, that according to Bohm's
theory, a particle always has a well-defined spatial trajectory, and a
change in boundary conditions can therefore nonlocally change that
trajectory. In this note we wish to point out a different and striking
instance of this phenomenon that is easy to understand qualitatively.
It is the familiar example of the expanding one-dimensional infinite

c Sadly, Professor Weingard died on September 14, 1996.
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well.
According to Bohm's theory, particles have definite positions

and velocities at all times. The motion of these particles is deter-
mined by the usual Schrodinger equation and the Bohmian equa-
tion for velocity. If we write the wavefunction in the form, V> =
#exp[—iS], then the Bohmian velocity is given by

Interestingly, as we can see from (1), wavefunctions whose phase S
is position independent correspond to particles at rest. Stationary
state wavefunctions with real spatial parts thus have zero velocity.

Consider a single particle trapped in a one-dimensional box
along the x-direction. To represent the box of length L, let the
potentials become infinitely high at x = 0 and x = L. The solutions
are \l)n(x) = Asin(nirx/L). Because the energy eigenfunctions ^n
are real, a single particle in such a state is at rest in the box.

Now, if the box suddenly expands at t = 0 to length L', the
states \)>n no longer remain stationary. They start evolving according
to

where the ij>'n(x) are the energy eigenfunctions of the expanded box,
with energy eigenvalues E'n. For the specific case of L —> 2L, then
up to an arbitrary phase, we have the well-known results

Writing exp[—iE'nt] = cos(E'nt) — ism(E'nt), we see that the phase
of i/>'n(x) is no longer constant, but has the form

Since VxS(x) is no longer constant, the particle will no longer be at
rest for t > 0.

We wish to emphasize only one point: the expansion of the
sides of the box nonlocally causes the particle to start moving! This is
nonlocal in the sense that there are no classical potentials present in
the box. Note that L can be arbitrarily large, and so the change can
occur arbitrarily far from the particle. The effect does not require
the well to double in size, but just to grow. In other words, an
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arbitrarily quick change can produce an effect arbitrarily far away,
instantaneously.

But this effect is not an instance of the familiar quantum
nonlocality involving entangled particle pairs, as in the EPR state.
Rather it is more like the nonlocality found in Newtonian gravita-
tional theory, wherein the gravitational force is locally determined
as the gradient of the gravitational potential, although this potential
is related by Poisson's equation to the global mass density. Because
of this relation, changes in the matter density can nonlocally disturb
the local gravitational field despite the fact that this field is locally
determined by the potential. In the case of interest the quantum
force responsible for moving the particle is also locally determined
by a field, the V'-field. But like the gravitational field potential, the
t/>-field also permits infinitely fast disturbances. A change in the
quantum field instantaneously affects the motion of all the particles.

Finally, Kastner, like Bohm, regards effects like this as being
mediated by the '"quantum potential" Q = -ti?V2R/2mR. This
thought follows from the fact that mdv/dt = —V(V + Q) where
V is the classical potential. This is to interpret Bohm's equation
of motion on the model of Newtonian mechanics. As is well-known,
substitution of V" = JZexp[—iS] into the Schrodinger equation implies
a generalized Hamilton-Jacobi equation

Nonetheless, there may be good reasons for not thinking of Bohm's
theory in this way, not the least of which is that the momentum
(or velocity) of a particle is not a dynamical variable in Bohm's
theory. This is because the motion of the particle is determined by a
particle's position and its wavefunction. Instead of thinking in terms
of the quantum potential, it is also possible to think simply of the
particle's motion being determined directly by its wavefunction via
the first-order equation (1) (this point of view has been emphasized
by [3]). The particle starting to move despite the lack of forces on it
is then understood as a direct result of instantaneous influences in
the V>-field and not as the product of the operation of a new potential.
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