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By developing an absurd counterfactual history, I show that many objec-
tions launched against Bohmian mechanics could also have been made against
Newtonian mechanics. This paper introduces readers to Koopman-von Neu-
mann dynamics, an operator-based Hilbert space representation of classical
statistical mechanics. Lessons for quantum foundations are drawn by replay-
ing the battles between advocates of standard quantum theory and Bohmian
mechanics in a fictional classical history.

Born in the year 1603 in a small hamlet in the Kingdom of Hungary, John von Newton was
an extraordinary polymath. It was said that when he was only six years old that he could
divide two nine digit numbers in his head while conversing fluently in Ancient Greek.
Widely acclaimed as the last mathematician who was equally at home in pure algebra
and applied alchemy, his contributions in the Wallachian Project of the Thirty Years War
led to the development of the cannon known as the Orban II. While some may know him
for his development of mechanical automata, “it’s-not-a-game” theory, and numerical
astrology, his unparalleled advances in physics were what made him famous amongst
contemporaries. However, these advances were controversial and quickly forgotten. This
essay is a recounting of the astonishing breakthroughs made by John von Newton and
their equally extraordinary reception.
Due to the plague in 1620, von Newton (Fig 1) was sent home and had to study

remotely. Because lessons were wrapped in straw, it was called learning by Broom.
While many students suffered greatly from Broom courses and the resulting social and
intellectual isolation, the circumstances had the opposite effect on a prodigy like von
Newton. Finally separated from teachers and students of inferior talent, he embarked on
what can only be described as the most remarkable set of intellectual leaps to ever occur
in world history. In short, in six months von Newton discovered an empirically adequate
(then) new physics, a theory equivalent to classical statistical mechanics, and all of the
mathematical innovations necessary to express this theory (e.g., calculus, analysis). A
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Figure 1: John von Newton

month later he represented this theory with an operator formalism in a state space we
now call Hilbert space.
This achievement was completed in 1620, yet by the time he died in 1699 this massive

feat was forgotten. (It is speculated that the tumor that killed him may have been due
to his work with toxic alchemical materials while developing Orban II.) It took until the
late 19th and early 20th centuries for science to rediscover what von Newton already
learned. In what follows I will summarize what he accomplished and his fate.

1 The Classical Schrödinger Equation

Contemporary writers said that von Newton would often go to bed troubled by a problem
and wake up with the solution. That is why he kept a quill pen and parchment by his
bedside. We don’t know what problem he had in mind on the night of Feb 3, 1620, but
the sepia-colored notepad from Feb 4 survives (Fig. 2). On it one can make out the
faded remains of an equation that takes the following form

i
∂Ψ

∂t
= L̂Ψ (1)

when put in modern terminology. Here Ψ(ϕ) is a classical wavefunction that is a ray
in a complex Hilbert space. Unlike in quantum mechanics, its domain is phase space
ϕ = (q, p), not configuration space. The generator L̂ is the Hermitian Louiville operator
and it evolves the ray through Hilbert space with time.
Equation (1) wasn’t (re)discovered until the 1930’s by Bernard Koopman 1931 and

a year later by John von Neumann 1932. Working in the context of ergodic theory,
Koopman showed taht unitary transformations are central to classicla physics. In so doing
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he proved that if a wavefunction Ψ (ϕ) satisfies (1) then the probability density ρ(ϕ) =
|Ψ(ϕ)|2 satisfies the classical Liouville equation ∂tρ = {H, ρ}, where H is the classical
Hamiltonian of the system. Although this result should be widely known, apparently it
is not as it has been rediscovered many times, often by very prominent physicists, e.g.,
Berry, Wiener, ’t Hooft.1

von Newton’s equation obviously bears a great similarity to its more famous cousin,
the Schrödinger equation of quantum mechanics: i∂Ψ∂t = ĤΨ . Working through von
Newton’s notebooks, we were astonished to see how “quantum mechanical” his formalism
was. He began with four postulates:

1. The state of the system is represented by a vector |Ψ〉 in a complex Hilbert space.

2. The state space of a composite system is the tensor product of the subsystems’
state spaces.

3. For any observable A, there is an associated Hermitian operator Â and eigenvalue
problem Â |A〉 = a |A〉. The eigenvalue a is understood as representing a particular
outcome measured in a lab.

4. The probability of measuring a is given by P (a) = |〈A| Ψ(t)〉|2. von Newton called
this “Bodor’s Law” .

von Newton called postulate 4 “Bodor’s Law” in honor of a friend who sold the best goat
milk in the hamlet. However, the name probably stuck because Bodor was renowned for
his gambling prowess. von Newton interpreted Bodor’s Law as arising due to an instan-
taneous collapse of the state |Ψ〉 into the eigenstate |A〉 associated with the measured
eigenvalue a.
Because there is no uncertainty relation in classical physics, position and momentum

have a common set of eigenstates in von Newton’s Hilbert space. As mentioned, the eigen-
kets therefore live in phase space, not configuration space, i.e., |A〉 = |q, p〉 == |q〉� |p〉.
The vectors |q, p〉 form a basis of the space. By assuming what we would call a “classical
commutator” [q̂, p̂] = 0 rule, von Newton was able to derive equation (1) from these four
postulates (Bondar et al 2021). Without modern mathematical physics at his disposal,
unfortunately it took von Newton 250 pages of calculation to get this result. Helping
ourselves to modern results such as the Ehrenfest Theorems and Stone’s Theorem, today
we can derive (1) very quickly (Wilczek 2015). Interestingly, recently Bondar et al 2012
show that replacing the classical commutator with the quantum commutation relations
but otherwise retaining the same postulates 1 − 4 as above leads to standard quantum
mechanics. In 1620 von Newton was only one tiny adjustment from discovering quantum
theory!

1See Berry 1992, Chirikov, Izrailev and Shepelyanskii 1988, Della Riccia & Wiener 1966, and ’t
Hooft 1997. The “classical Schrödinger equation” (1) should not be confused with another “classical
Schrödinger equation” derived in the 1960’s by Schiller 1962 and Rosen 1964. This later equation
defines the wavefunction on configuration space Ψ (q) whereas (1) applies to a wavefunction over
phase space.
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Figure 2: Some of von Newton’s calculation

In any case, the resulting theory is an operator-based probabilistic theory that makes
predictions about the values of measurements. The generator of motion evolves the state
in a complex Hilbert space between measurements via (1) just as the Hamiltonian does
in the Schrödinger equation. The norm 〈Ψ(t)|Ψ(t)〉 is conserved by the time evolution,
which helps justify Bodor’s Rule. And one can calculate expectation values of observables
and even easily switch vector bases as one does in quantum mechanics. See Gozzi and
Mauro 2004, Mauro 2002, and Bondar et al 2012 for the state of the art on Koopman-von
Neumann dynamics.
As much as it looks like quantum mechanics, however, von Newton’s theory was purely

classical. The wavefunction lives in phase space, not configuration space. And the proba-
bilities are the ones predicted by classical statistical mechanics, not quantum mechanics.
The probabilities predicted by Bodor’s Rule correspond precisely to solutions of classical
statistical mechanics, i.e., the probability densities given by the classical Liouville equa-
tion. In a two slit experiment (see Mauro 2002 for a clear analysis) the phases of the
classical waves cancel out and the total probability distribution on the screen is the sum
of the probability distributions for each slit, reproducing what we expect classically. The
theory was empirically adequate to then known empirical phenomena, which at this time
consisted mostly of cannon ball trajectories.

2 Reception

When the plague ended, von Newton promoted his theory at various august academic
bodies throughout Europe. With such a breathtaking set of advances, he expected to be
lauded as having produced a great triumph of reason. “If I have seen further,” he said,
“it is because I stand as a giant.” Instead the response was somewhat chilly. Scientists
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were impressed, but they felt uneasy about von Newton’s product. His peers wanted to
understand the nature of physical reality. Rene Descartes had posited a world consisting
of corpuscles organized in complicated vortexes, but what was von Newton offering? A
kind of operationalist “black box” quality pervaded his theory, as his operator formalism
provided only predictions for various observables.
At the University of Zurich he met a physicist named Albert Mechanstein, who would

prove to be a real thorn in von Newton’s side. Mechanstein was a disciple of the phi-
losophy of Descartes. He said to von Newton that it’s all well and good that you’ve
accurately predicted the probability distribution of a bunch of cannon balls hitting a
castle wall and of arrows entering sniper windows, but you don’t say anything about
what constitutes these balls, arrows, and walls, nor the reason why they behave the way
they do. von Newton replied,

Since a good theory must be based on directly observable magnitudes, I
thought it more fitting to restrict myself to these.

As von Newton later recounted, Mechanstein was stunned:

But you don’t seriously believe that none but observable magnitudes must go
into a physical theory?...It is the theory which decides what we can observe.

von Newton was equally upset, reporting that he was “completely taken aback by [Mechanstein]’s
attitude.”2 He felt that it is “wrong to think that the task of physics is to find out how
nature is”; rather, he thought, “Physics concerns what we can say about nature.”3

As he travelled von Newton heard more objections. Pressure was put on the rela-
tionship between Bodor’s Law and equation (1). von Newton held that we have “two
fundamentally different types of interventions which can occur in a system; when an
object is undisturbed, equation (1) “describes how the system changes continuously and
causally in the course of time” but once measurement happens something “discontin-
uous, non-causal, and instantaneous” occurs, i.e., the collapse via Bodor’s Law to an
eigenstate.4 The dynamics is deterministic when no measurement is happening, but
indeterministic when it is.
This response, however, only focused attention on the role of measurement in von

Newton’s theory. Like standard quantum theory, von Newton’s theory has a measurement
problem.5 Equation (1) is linear and allows superpositions of macroscopic outcomes;

2Heisenberg recounting his discussions with Einstein, quoted in Becker 2018, 29.
3Bohr on physics after the Solvay conference, quoted in Becker 2018, 49.
4von Neumann describing his two dynamics, quoted in Becker 2018, 67.
5The two measurement problems are slightly different and interesting to consider. As Mauro 2002 em-
phasizes, the fundamental difference between Koopman-von Neumann theory and ordinary quantum
theory is that in the former but not the latter the phase interacts with the modulus. Contrast a
Madelung decomposition of equation (1) with the Schrödinger equation. Write the quantum wave-
function as ψ(x) = A(x)exp[i/~S(x)]and substitute it into the Schrödinger equation and then separate
real and imaginary parts. Then as is well known one obtains

∂S

∂t
+

1

2m

(
∂S

∂x

)2

+ V =
~2

2mA

∂2A

∂x2
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measurement collapses these superpositions to an eigenstate of the relevant observable.
What interaction qualifies as a measurement, Mechanstein asked?
von Newton’s acolytes differed on this question. Some said that a measurement only

occurs when an outcome has been registered by a divine soul. That raised the question
of who had souls. The Synod of Mâcon had long ago clarified that women had souls and
Descartes compellingly argued that animals do not. But what about pagans and serfs?
They certainly looked and acted like they could apply von Newton’s theory as well as
anyone, but did they have divine souls? And what types of souls were necessary? Was
having only a vegetative soul sufficient to collapse a wavefunction?
Other acolytes did not use souls but understood measurement as an interaction be-

tween systems described in different ways. Bohr taught us that measuring devices are
inherently classical, that the interaction between the classical and the quantum is central
to explaining measurement. It’s amazing to learn that there was a counterpart to this
Bohrian position back in von Newton’s day. One of his followers held that measuring
devices are essentially medieval. What triggers a measurement is the interaction of a
classical system with a medieval one, e.g., catapult, plough, water mill. Opponents felt
that “medieval” was too vague to be a fundamental category in a physical theory.
A common theme emerged: scientists of the day didn’t like the fundamental split

between measurer and measured. Shouldn’t the measurer – be they a stone mason, a
nobleman, or a scythe – be itself describable in the language of physics? Why must there
always be this shifty subject/object split in physics? von Newton’s protestations that
“for all practical purposes” it didn’t matter found few sympathetic ears.

3 Classical Mechanics without Obs’rv’rs

What really put pressure on von Newton’s theory was the remarkable development of
a mechanistic theory by someone with essentially the same name, Isaac Newton. In
1687 Newton published the Philosophiæ Naturalis Principia Mathematica. The Principia

m
∂A

∂t
+
∂A

∂x

∂S

∂x
+
A

2

∂2S

∂x2
= 0

where one can see that the phase S is coupled to the modulus A. Do the same for the classical
wavefunction ψ(x) = F (q, p)exp[i/~G(q, p)] when inserted into (1). Then we get

i
∂F

∂t
= ĤF

i
∂G

∂t
= ĤG

and no coupling between F and G. (Why then introduce phases at all? They become necessary if one
wants the freedom of basis one gets in Hilbert space; see Mauro 2002.) As a result of this decoupling,
wavefunctions without phases cannot generate them in their time evolution. Hence the measurement
problem is a bit different than quantum mechanically. In the language of foundations of physics,
the classical measurement problem associated with Koopman-von Neumann is like the quantum one
if decoherence worked perfectly, driving the off-diagnol terms to exactly zero. That still leaves a
measurement problem, the so-called “and” to “or” problem of Bell 1990 (see also Maudlin 1995). On
the classical measurmeent problem, see Chen 2022 (section 5.4), Katagiri 2020, and McCoy 2020.
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posited an ontology of corpuscles who always evolve according to the same dynamical
equation. Cannon balls, cannon ball parts, cannon ball operators, and cannon ball
victims could all be described at once by Newton’s famous second law. There was no
subject/object split, no fine discussions of what types of souls or medieval devices collapse
wavefunctions, or any of that. Positing one basic law rather than two, Newton offered
what he called a “mechanics without obs’rv’rs.”
In our age, Newton is famous for offering a physics that unified celestial and terrestrial

spheres, the heavens and the earth. Back then he was also known for having provided
a deeper unification of von Newton’s process 1 dynamics (the deterministic equation 1)
with von Newton’s process 2 dynamics (Bodor’s law). He unified the spheres and the
two types of dynamics.
More than that, Newton offered the physical “nut-and-bolt” explanations that people

didn’t find in von Newton’s physics. In a siege of a castle, one might shoot a cannon
aimed at a wall many times. Cannon operators noticed a kind of normal statistical
pattern developing on the wall. Again and again, attack after attack, similar probability
distributions appeared on castle walls. Why? von Newton’s physics would predict these
distributions, but they couldn’t answer why they might appear like this. It would be
a very hard calculation to do, but Newton’s physics at least offered one understanding
of what must be going on. Small changes in the initial positions and velocities of the
cannon balls, plus tiny fluctuations in their mass, are to be expected. Patterns in these
differences are then responsible for why the cannon balls form these distributions.
More generally, going back to Mechanstein’s complaint, the theory “decides” what is

observable. That is, we can explain what is observable in terms of the posited ontology
– corpuscles – and laws. We do not begin with observations as primitive, but offer
explanations for why we observe what we do. These explanations were possible because
Newton offered an ontology and clear laws, something that von Newton rejected.
When Newtonians ultimately derived von Newton’s theory from their own, that was the

death knell of the latter’s influence. Suppose we have a swarm of Newtonian corpuscles
sweeping out continuous trajectories through time. We can think of this as a kind of fluid
described by a density ρ(x, p, t). If we insist that its value is non-negative and real, it can
be interpreted as the probability of a particle being at point x at time t with momentum
p (using measure

∫
dxdp). It follows from Newtonian mechanics that the flow of this

fluid is incompressible, which implies that

∂p

∂t
= −ẋ ∂ρ

∂x
− ṗ∂ρ

∂p
(2)

holds, which provides a dynamics for ρ. Equation (1) can be derived from (2) by defining
a wavefunction ρ ≡ |Ψ(x, p)|2 and multiplying both sides by i (Wilczek 2015). So with
Newton one could get all of von Newton’s predictions but also explain why we were
observing what we do. We could open the black box and see what’s going on.
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4 Criticism of Newton

von Newton and his advocates did not take these provocations lightly. They viciously
attacked Newton and his physics. One giant defender of von Newton did not deign
to comment on Newton’s physics directly, but through intermediaries said it was “very
foolish.”6 Another very distinguished physicist called it “artificial metaphysics.”7 Some
took an exremely bold position (bold because manifestly false) and held that that there
was no alternative to von Newton and his interpretation, that von Newton’s physics
“eminently possesses this character of uniqueness” in it.8 Mostly inspired by an extreme
empircist or even positivistic philosophy, these objections fell on deaf ears among the
Cartesians and Newtonians of the day.
von Newton even made a political case against Newton. Like Leibniz, he wrote to

Princess Caroline of Ansbach complaining about Newton’s theory. Leibniz accused New-
ton of positing occult qualities through his non-local gravitational force and of requiring
God to act as a clockmaker, fixing his product from time to time. von Newton picked
up on this and also complained that Newton’s clockwork universe deprived us of free
will whereas his indeterministic theory made room for it. Newton was summoned before
Parliament’s House for Unpious Activities Committee as a result, but he answered the
charges so well that no stain was left on his reputation and he was ultimately made
Master of the Royal Mint.9

Finding fewer and fewer supporters, von Newton could only find an employment with
a few of his followers at the University of Copenhagen. There he toiled in obscurity until
the minstrels only sang of Newton and never the great von Newton. In some sense he
had the last laugh, however, as his papers left in the gorgeous library at the University
of Copenhagen were found by a young physicist named Niels Bohr.

5 Lessons from the Rise and Fall of von Newton

It’s an honor for me to write in a volume dedicated to Detleff Dürr. He filled a room
with both his warmth and knowledge. It would be impossible for me to quantify how
much I learned from him and his group. One article that made a special impression is
“Naive Realism about Operators”, which inspired this paper. “Naive Realism...” shows
in detail how the entire Hilbert space operator formalism mechanics can be derived from
natural assumptions and moves from Bohmian mechanics. It argues that one should not
confuse mathematical operators with physical properties of systems. Doing so leads to a
fetishization of the quantum operator algebra that becomes an even bigger problem than
the measurement problem.
In my absurd counterfactual history, I mimic this situation classically. I imagine that

a measurement operator formalism arose first and then Newton came along with a dy-

6Bohr on Bohm, cited in Becker 2018, 107.
7Pauli on Bohm, cited in Becker 2018, 107.
8Rosenfeld 1957, 4-42.
9See Cushing 1994 for many objections to Bohm along these lines, especially by Pauli. Cushing also
details the political attacks on Bohm.
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namics for classical “beables” (an always determinate ontology). From this dynamics and
ontology, one can then derive in detail how the entire Koopman-von Neumann Hilbert
space operator formalism might arise. In the actual world, we had Newton first and
Koopman-von Neumann second; and later, standard quantum theory first, Bohmian me-
chanics second (by only two years in the form of de Broglie). Should the temporal order
of these appearances matter? I don’t think so. Yet it seems almost unconscionable
to launch the counterparts of the objections directed at Bohm in the actual world to
Newton. Newtonian mechanics is rightly celebrated as one of the great achievements of
science. While there are of course differences between the cases of Bohm and Newton,
many common objections do not rely on these differences.
Since we can deduce the operator formalism of Koopman-von Neumann from Newto-

nian dynamics and had the latter first, we were never tempted to be “naive realists” about
classical operators. But had things worked out differently, we might have been. We’re
often better at seeing mistakes in the past than the present, so I invented a counterfactual
past and transported mistakes across times and worlds.10

Another lesson of the Koopman-von Neumann theory is that it is important to tease
apart features of a particular mathematical representation of a theory from the theory
itself. Features of a representation have a pernicious way of sneaking into our interpre-
tation of the theory and how we evaluate it and alternatives. Jennings and Leifer 2016
ask “what phenomena of quantum theory are intrinsically non-classical?” To answer this
question they apply a criterion:

If a phenomenon of quantum physics also occurs within a classical statistical
physics setting, perhaps with minor additional assumptions that don’t vio-
lently clash with our everyday conceptions, then it should not be viewed as
an intrinsically quantum mechanical phenomenon.

They conclude that many “commonly touted phenomena” such as randomness, comple-
mentarity, collapse of the wavepacket, the use of wavefunctions and Hilbert space, and
more, cannot be marks of intrinsically quantum phenomena. I wholeheartedly agree. By
placing classical statistical mechanics in an operator-based formalism in Hilbert space,
Koopman and von Neumann demonstrably show that many of these representational fea-
tures are not inherently quantum mechanical. Not only is classical physics expressible in
a similar formalism, but it can also employ collapses of the wavefunction, Born’s Rule, a
fundamental subject/object split, and two types of dynamics. The operator measurement
formalism seems to almost invite an interpretation with an instrumentalist flavor.
If one is a naive realist about classical observables, Koopman-von Neumann even has

a measurement problem. But that is the result of a choice, a bad choice. Classical
statistical mechanics does not have a measurement problem. Neither does quantum
mechanics if one adopts a decent interpretation, e.g., the Bohmian mechanics that Detlef
prized. The measurement problem in Koopman-von Neumann makes this point plain.
There it results not from the peculiarities of the classical world but from the peculiarities
of “quantum philosophy” applied to the classical world. As Detlef saw much better than

10See Nikolić 2008 for a less incredible counterfactual history toward the same point.
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most, the same is true in quantum physics. That is the ultimate lesson of the tragedy of
the great and forgotten John von Newton, the naive realist about classical observables.
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